|
|
Co-Precipitation Behavior in Ferrite Region During Isothermal Process in Ti-Mo-Cu Microalloyed Steel |
TANG Shuai1( ), LAN Huifang1, DUAN Lei1, JIN Jianfeng2, LI Jianping1, LIU Zhenyu1, WANG Guodong1 |
1.State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China 2.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China |
|
Cite this article:
TANG Shuai, LAN Huifang, DUAN Lei, JIN Jianfeng, LI Jianping, LIU Zhenyu, WANG Guodong. Co-Precipitation Behavior in Ferrite Region During Isothermal Process in Ti-Mo-Cu Microalloyed Steel. Acta Metall Sin, 2022, 58(3): 355-364.
|
Abstract The coprecipitation of carbides and copper (Cu) particles is an effective technique for strengthening microalloyed steel. In this study, OM and TEM techniques were used to investigate the coprecipitation behavior of carbides and ε-Cu in Ti-Mo-Cu microalloyed steel at different isothermal temperatures. A solid solution precipitation model and the classical nucleation theory of precipitates were used to calculate the precipitation kinetics in the Ti-Mo-Cu microalloyed steel. The results show that (Ti, Mo)C and ε-Cu precipitated independently, and they showed the N-W and K-S orientations with the ferrite matrix, respectively. The dominant precipitates at 600oC are ε-Cu. (Ti, Mo)C and ε-Cu were coprecipitated at 620oC. At 640-660oC, (Ti, Mo)C was mainly precipitated in the form of interphase precipitation. Thermodynamic calculations showed that in the range of 600-660oC with an increase in temperature, the Ti/Mo atomic ratio in (Ti, Mo)C increases from 2.5 to 4.5, and the carbide changes from Ti0.71Mo0.29C to Ti0.79Mo0.21C. The precipitation-temperature-time (PTT) curves of (Ti, Mo)C and ε-Cu intersect at 616oC, indicating simultaneous precipitation of (Ti, Mo)C and ε-Cu. (Ti, Mo)C and ε-Cu preferentially precipitate below and above 616oC, respectively. The calculation and experimental results are consistent.
|
Received: 28 December 2020
|
|
Fund: National Natural Science Foundation of China(51774083);Fundamental Research Funds for the Central Universities of China(N2107002);Project of Introducing Talents of Discipline to Universities(B20029);National Key Research and Development Program of China(2017YFB0304402) |
About author: TANG Shuai, associate professor, Tel: 17640032562, E-mail: tangshuai@ral.neu.edu.cn
|
1 |
Takahashi M. Development of high strength steels for automobiles [R]. Nippon Steel Tech. Rep. No.88, 2003
|
2 |
Kashima T, Hashimoto S, Mukai Y. 780 N/mm2 grade hot-rolled high-strength steel sheet for automotive suspension system [J]. JSAE Rev., 2003, 24: 81
|
3 |
Patel J, Klinkenberg C, Hulka K. Hot rolled HSLA strip steels for automotive and construction applications [A]. Niobium Science & Technology—Proceeding of the International Symposium Niobium 2001 [C]. Orlando, FL: Niobium2001Limited, 2001: 647
|
4 |
Morita M, Kurosawa N, Masui S, et al. Development of hot rolled high strength steels hardened by precipitation hardening with high stretch flanging [A]. CAMP-ISIJ [C]. Tokyo: The Iron and Steel Institute of Japan, 1992: 1863
|
5 |
Seto K, Funakawa Y, Kaneko S. Hot rolled high strength steels for suspension and chassis parts “NANOHITEN” and “BHT® Steel” [R]. JFE Tech. Rep. No.10, 2007
|
6 |
Funakawa Y, Shiozaki T, Tomita K, et al. Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides [J]. ISIJ Int., 2004, 44: 1945
|
7 |
Funakawa Y, Seto K. Stabilization in strength of hot-rolled sheet steel strengthened by nanometer-sized carbides [J]. Tetsu Hagané, 2007, 93: 49
|
|
船川 義正, 瀬戸 一洋. 微細炭化物で析出強化した高強度熱延鋼板の強度安定化 [J]. 鐵と鋼, 2007, 93: 49
|
8 |
Gladman T, et al. Structure-property relationships in high-strength microalloyed steels [A]. Microalloying 75' [C]. New York: Union Carbide Corporation, 1977: 32
|
9 |
Honeycombe R W K, Mehl R F. Transformation from austenite in alloy steels [J]. Metall. Trans., 1976, 7A: 915
|
10 |
Berry F G, Honeycombe R W K. Isothermal decomposition of austenite in Fe-Mo-C alloys [J]. Metall. Trans., 1970, 1B: 3279
|
11 |
Yen H W, Chen P Y, Huang C Y, et al. Interphase precipitation of nanometer-sized carbides in a titanium-molybdenum-bearing low-carbon steel [J]. Acta Mater., 2011, 59: 6264
|
12 |
Chen C Y, Yen H W, Kao F H, et al. Precipitation hardening of high-strength low-alloy steels by nanometer-sized carbides [J]. Mater. Sci. Eng., 2009, A499: 162
|
13 |
Jang J H, Lee C H, Heo Y U, et al. Stability of (Ti, M)C (M = Nb, V, Mo and W) carbide in steels using first-principles calculations [J]. Acta Mater., 2012, 60: 208
|
14 |
Kamikawa N, Abe Y, Miyamoto G, et al. Tensile behavior of Ti, Mo-added low carbon steels with interphase precipitation [J]. ISIJ Int., 2014, 54: 212
|
15 |
Chen J, Lü M Y, Tang S, et al. Microstructure, mechanical properties and interphase precipitation behaviors in V-Ti microalloyed steel [J]. Acta Metall. Sin., 2014, 50: 524
|
|
陈 俊, 吕梦阳, 唐 帅等. V-Ti微合金钢的组织性能及相间析出行为 [J]. 金属学报, 2014, 50: 524
|
16 |
Chen C Y, Chen C C, Yang J R. Microstructure characterization of nanometer carbides heterogeneous precipitation in Ti-Nb and Ti-Nb-Mo steel [J]. Mater. Charact., 2014, 88: 69
|
17 |
Tang S, Liu Z Y, Wang G D, et al. Microstructural evolution and mechanical properties of high strength microalloyed steels: Ultra fast cooling (UFC) versus accelerated cooling (ACC) [J]. Mater. Sci. Eng., 2013, A580: 257
|
18 |
Jha G, Das S, Sinha S, et al. Design and development of precipitate strengthened advanced high strength steel for automotive application [J]. Mater. Sci. Eng., 2013, A561: 394
|
19 |
Zhang K, Yong Q L, Sun X J, et al. Effect of coiling temperature on microstructure and mechanical properties of Ti-V-Mo complex microalloyed ultra-high strength steel [J]. Acta Metall. Sin., 2016, 52: 529
|
|
张 可, 雍岐龙, 孙新军等. 卷取温度对Ti-V-Mo复合微合金化超高强度钢组织及力学性能的影响 [J]. 金属学报, 2016, 52: 529
|
20 |
Zhang K, Sun X J, Zhang M Y, et al. Kinetics of (Ti, V, Mo) C precipitated in γ/α matrix of Ti-V-Mo complex microalloyed steel [J]. Acta Metall. Sin., 2018, 54: 1122
|
|
张 可, 孙新军, 张明亚等. Ti-V-Mo复合微合金钢中(Ti, V, Mo)C在γ/α中沉淀析出的动力学 [J]. 金属学报, 2018, 54: 1122
|
21 |
Li C, Wang X M, Shang C J, et al. Study on precipitation behavior of phases containing Cu in the Cu-bearing steel in continuous cooling process [J]. Acta Metall. Sin., 2010, 46: 1488
|
|
李 闯, 王学敏, 尚成嘉等. 连续冷却过程中含Cu相在钢中析出行为的研究 [J]. 金属学报, 2010, 46: 1488
|
22 |
Dunne D P. Review: Interaction of precipitation with recrystallisation and phase transformation in low alloy steels [J]. Mater. Sci. Technol., 2010, 26: 410
|
23 |
Dunne D P, Banadkouki S S G, Yu D. Isothermal transformation products in a Cu-bearing high strength low alloy steel [J]. ISIJ Int., 1996, 36: 324
|
24 |
Gagliano M S, Fine M E. Characterization of the nucleation and growth behavior of copper precipitates in low-carbon steels [J]. Metall. Mater. Trans., 2004, 35A: 2323
|
25 |
Chen C Y, Li C H, Tsao T C, et al. A novel technique for developing a dual-phase steel with a lower strength difference between ferrite and martensite [J]. Mater. Today Commun., 2020, 23: 100895
|
26 |
Goodman S R, Brenner S S, Low J R. An FIM-atom probe study of the precipitation of copper from iron-1.4 at. pct copper. Part I: Field-ion microscopy [J]. Metall. Trans., 1973, 4: 2363
|
27 |
Guo H, Cheng J J, Yang S W, et al. Influence of combined Cu and Nb addition on the quenched microstructure and precipitation during tempering in ultra-low carbon steels [J]. J. Alloys Compd., 2013, 577: S619
|
28 |
Kao F. Precipitation strengthening of nanometer-sized copper particles and alloy carbides in high strength low alloy steels [D]. Taiwan University, 2008
|
29 |
Yang Y, Lu H, Yu C, et al. First-principles calculations of mechanical properties of TiC and TiN [J]. J. Alloys Compd., 2009, 485: 542
|
30 |
Yong Q L. Secondary Phase in Steels [M]. Beijing: Metallurgical Industry Press, 2006: 173
|
|
雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 173
|
31 |
Taylor K A. Solubility products for titanium-, vanadium-, and niobium-carbide in ferrite [J]. Scr. Metall. Mater., 1995, 32: 7
|
32 |
Pavlina E J, Speer J G, van Tyne C J. Equilibrium solubility products of molybdenum carbide and tungsten carbide in iron [J]. Scr. Mater., 2012, 66: 243
|
33 |
Cahn J W. Nucleation on dislocations [J]. Acta Metall., 1957, 5: 169
|
34 |
Yong Q L. Theory of nucleation on dislocations [J]. J. Mater. Sci. Technol., 1990, 6: 239
|
35 |
Willens R H, Buehler E, Matthias B T. Superconductivity of the transition-metal carbides [J]. Phys. Rev., 1967, 159: 327
|
36 |
Straumanis M E, Yu L S. Lattice parameters, densities, expansion coefficients and perfection of structure of Cu and of Cu-In α phase [J]. Acta Cryst., 1969, 25A: 676
|
37 |
Elliott R O, Kempter C P. Thermal expansion of some transition metal carbides [J]. J. Phys. Chem., 1958, 62: 630
|
38 |
Krasnenko V, Brik M G. First-principles calculations of hydrostatic pressure effects on the structural, elastic and thermodynamic properties of cubic monocarbides XC (X = Ti, V, Cr, Nb, Mo, Hf) [J]. Solid State Sci., 2012, 14: 1431
|
39 |
White G K. Thermal expansion of reference materials: Copper, silica and silicon [J]. J. Phys., 1973, 6D: 2070
|
40 |
Moll S H, Ogilvie R E. Solubility and diffusion of titanium in iron [J]. Trans. Metall. Soc. AIME, 1959, 215: 613
|
41 |
Smithells C J, Brandes E A. Smithells Metals Reference Book [M]. Oxford: Butterworth-Heinemann, 1992: 13
|
42 |
Wang J T, Hodgson P D, Bikmukhametov I, et al. Effects of hot-deformation on grain boundary precipitation and segregation in Ti-Mo microalloyed steels [J]. Mater. Des., 2018, 141: 48
|
43 |
Dhara S, Marceau R K W, Wood K, et al. Precipitation and clustering in a Ti-Mo steel investigated using atom probe tomography and small-angle neutron scattering [J]. Mater. Sci. Eng., 2018, A718: 74
|
44 |
Timokhina I, Miller M K, Wang J T, et al. On the Ti-Mo-Fe-C atomic clustering during interphase precipitation in the Ti-Mo steel studied by advanced microscopic techniques [J]. Mater. Des., 2016, 111: 222
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|