Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (3): 355-364    DOI: 10.11900/0412.1961.2020.00521
Research paper Current Issue | Archive | Adv Search |
Co-Precipitation Behavior in Ferrite Region During Isothermal Process in Ti-Mo-Cu Microalloyed Steel
TANG Shuai1(), LAN Huifang1, DUAN Lei1, JIN Jianfeng2, LI Jianping1, LIU Zhenyu1, WANG Guodong1
1.State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
2.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
Cite this article: 

TANG Shuai, LAN Huifang, DUAN Lei, JIN Jianfeng, LI Jianping, LIU Zhenyu, WANG Guodong. Co-Precipitation Behavior in Ferrite Region During Isothermal Process in Ti-Mo-Cu Microalloyed Steel. Acta Metall Sin, 2022, 58(3): 355-364.

Download:  HTML  PDF(2561KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The coprecipitation of carbides and copper (Cu) particles is an effective technique for strengthening microalloyed steel. In this study, OM and TEM techniques were used to investigate the coprecipitation behavior of carbides and ε-Cu in Ti-Mo-Cu microalloyed steel at different isothermal temperatures. A solid solution precipitation model and the classical nucleation theory of precipitates were used to calculate the precipitation kinetics in the Ti-Mo-Cu microalloyed steel. The results show that (Ti, Mo)C and ε-Cu precipitated independently, and they showed the N-W and K-S orientations with the ferrite matrix, respectively. The dominant precipitates at 600oC are ε-Cu. (Ti, Mo)C and ε-Cu were coprecipitated at 620oC. At 640-660oC, (Ti, Mo)C was mainly precipitated in the form of interphase precipitation. Thermodynamic calculations showed that in the range of 600-660oC with an increase in temperature, the Ti/Mo atomic ratio in (Ti, Mo)C increases from 2.5 to 4.5, and the carbide changes from Ti0.71Mo0.29C to Ti0.79Mo0.21C. The precipitation-temperature-time (PTT) curves of (Ti, Mo)C and ε-Cu intersect at 616oC, indicating simultaneous precipitation of (Ti, Mo)C and ε-Cu. (Ti, Mo)C and ε-Cu preferentially precipitate below and above 616oC, respectively. The calculation and experimental results are consistent.

Key words:  Ti-Mo-Cu microalloyed steel      (Ti, Mo)C      ε-Cu      co-precipitation      precipitation kinetics     
Received:  28 December 2020     
ZTFLH:  TG142.1  
Fund: National Natural Science Foundation of China(51774083);Fundamental Research Funds for the Central Universities of China(N2107002);Project of Introducing Talents of Discipline to Universities(B20029);National Key Research and Development Program of China(2017YFB0304402)
About author:  TANG Shuai, associate professor, Tel: 17640032562, E-mail: tangshuai@ral.neu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00521     OR     https://www.ams.org.cn/EN/Y2022/V58/I3/355

Fig.1  OM images of experiment steel with different holding temperatures (F—ferrite, B—bainite, M—martensite)
Fig.2  TEM bright field images and SAED pattern of the interphase precipitate in speciments isothermally treated at 600oC (IP—interphase precipitation)
Fig.3  TEM bright field images of the interphase precipitate in speciments isothermally treated at 620oC (a), 640oC (b), and 660oC (c), and dark filed image at 660oC and corresponding SAED pattern (inset) (d)
SymbolDescriptionMagnitudeUnitRef.
aTiCLattice constant of TiC at room temperature0.433nm[29]
aMoCLattice constant of MoC at room temperature0.428nm[35]
aCuLattice constant of ε-Cu at room temperature0.362nm[36]
aFeLattice constant of α-Fe at room temperature0.287nm
αTiCLinear expansion coefficient of TiC7.86 × 10-6K-1[37]
αMoCLinear expansion coefficient of MoC6.88 × 10-6K-1[38]
αCuLinear expansion coefficient of Cu16.5 × 10-6K-1[39]
QTiActivation energy of Ti in α-Fe248kJ·mol-1[40]
QMoActivation energy of Mo in α-Fe229kJ·mol-1[41]
QCuActivation energy of Cu in α-Fe284kJ·mol-1[41]
vFePoisson ratio of Fe0.291[41]
vCuPoisson ratio of Cu0.345[41]
GFeShear modulus of Fe89334 - 29.688TGPa[30]
GCuShear modulus of Cu44689 - 15.936TGPa[30]
kBoltzmann constant1.38 × 10-23J·K-1
Table 1  Parameters used in calculations[29,30,35-41]
Fig.4  Thermodynamics/kinetics calculation results of precipitation of (Ti, Mo)C and ε-Cu in ferrite at different temper-atures (PPT—precipitation-temperature-time, t0—the precipitation start time, t0.05—the time of pricipitates fraction of 5%)
1 Takahashi M. Development of high strength steels for automobiles [R]. Nippon Steel Tech. Rep. No.88, 2003
2 Kashima T, Hashimoto S, Mukai Y. 780 N/mm2 grade hot-rolled high-strength steel sheet for automotive suspension system [J]. JSAE Rev., 2003, 24: 81
3 Patel J, Klinkenberg C, Hulka K. Hot rolled HSLA strip steels for automotive and construction applications [A]. Niobium Science & Technology—Proceeding of the International Symposium Niobium 2001 [C]. Orlando, FL: Niobium2001Limited, 2001: 647
4 Morita M, Kurosawa N, Masui S, et al. Development of hot rolled high strength steels hardened by precipitation hardening with high stretch flanging [A]. CAMP-ISIJ [C]. Tokyo: The Iron and Steel Institute of Japan, 1992: 1863
5 Seto K, Funakawa Y, Kaneko S. Hot rolled high strength steels for suspension and chassis parts “NANOHITEN” and “BHT® Steel” [R]. JFE Tech. Rep. No.10, 2007
6 Funakawa Y, Shiozaki T, Tomita K, et al. Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides [J]. ISIJ Int., 2004, 44: 1945
7 Funakawa Y, Seto K. Stabilization in strength of hot-rolled sheet steel strengthened by nanometer-sized carbides [J]. Tetsu Hagané, 2007, 93: 49
船川 義正, 瀬戸 一洋. 微細炭化物で析出強化した高強度熱延鋼板の強度安定化 [J]. 鐵と鋼, 2007, 93: 49
8 Gladman T, et al. Structure-property relationships in high-strength microalloyed steels [A]. Microalloying 75' [C]. New York: Union Carbide Corporation, 1977: 32
9 Honeycombe R W K, Mehl R F. Transformation from austenite in alloy steels [J]. Metall. Trans., 1976, 7A: 915
10 Berry F G, Honeycombe R W K. Isothermal decomposition of austenite in Fe-Mo-C alloys [J]. Metall. Trans., 1970, 1B: 3279
11 Yen H W, Chen P Y, Huang C Y, et al. Interphase precipitation of nanometer-sized carbides in a titanium-molybdenum-bearing low-carbon steel [J]. Acta Mater., 2011, 59: 6264
12 Chen C Y, Yen H W, Kao F H, et al. Precipitation hardening of high-strength low-alloy steels by nanometer-sized carbides [J]. Mater. Sci. Eng., 2009, A499: 162
13 Jang J H, Lee C H, Heo Y U, et al. Stability of (Ti, M)C (M = Nb, V, Mo and W) carbide in steels using first-principles calculations [J]. Acta Mater., 2012, 60: 208
14 Kamikawa N, Abe Y, Miyamoto G, et al. Tensile behavior of Ti, Mo-added low carbon steels with interphase precipitation [J]. ISIJ Int., 2014, 54: 212
15 Chen J, Lü M Y, Tang S, et al. Microstructure, mechanical properties and interphase precipitation behaviors in V-Ti microalloyed steel [J]. Acta Metall. Sin., 2014, 50: 524
陈 俊, 吕梦阳, 唐 帅等. V-Ti微合金钢的组织性能及相间析出行为 [J]. 金属学报, 2014, 50: 524
16 Chen C Y, Chen C C, Yang J R. Microstructure characterization of nanometer carbides heterogeneous precipitation in Ti-Nb and Ti-Nb-Mo steel [J]. Mater. Charact., 2014, 88: 69
17 Tang S, Liu Z Y, Wang G D, et al. Microstructural evolution and mechanical properties of high strength microalloyed steels: Ultra fast cooling (UFC) versus accelerated cooling (ACC) [J]. Mater. Sci. Eng., 2013, A580: 257
18 Jha G, Das S, Sinha S, et al. Design and development of precipitate strengthened advanced high strength steel for automotive application [J]. Mater. Sci. Eng., 2013, A561: 394
19 Zhang K, Yong Q L, Sun X J, et al. Effect of coiling temperature on microstructure and mechanical properties of Ti-V-Mo complex microalloyed ultra-high strength steel [J]. Acta Metall. Sin., 2016, 52: 529
张 可, 雍岐龙, 孙新军等. 卷取温度对Ti-V-Mo复合微合金化超高强度钢组织及力学性能的影响 [J]. 金属学报, 2016, 52: 529
20 Zhang K, Sun X J, Zhang M Y, et al. Kinetics of (Ti, V, Mo) C precipitated in γ/α matrix of Ti-V-Mo complex microalloyed steel [J]. Acta Metall. Sin., 2018, 54: 1122
张 可, 孙新军, 张明亚等. Ti-V-Mo复合微合金钢中(Ti, V, Mo)C在γ/α中沉淀析出的动力学 [J]. 金属学报, 2018, 54: 1122
21 Li C, Wang X M, Shang C J, et al. Study on precipitation behavior of phases containing Cu in the Cu-bearing steel in continuous cooling process [J]. Acta Metall. Sin., 2010, 46: 1488
李 闯, 王学敏, 尚成嘉等. 连续冷却过程中含Cu相在钢中析出行为的研究 [J]. 金属学报, 2010, 46: 1488
22 Dunne D P. Review: Interaction of precipitation with recrystallisation and phase transformation in low alloy steels [J]. Mater. Sci. Technol., 2010, 26: 410
23 Dunne D P, Banadkouki S S G, Yu D. Isothermal transformation products in a Cu-bearing high strength low alloy steel [J]. ISIJ Int., 1996, 36: 324
24 Gagliano M S, Fine M E. Characterization of the nucleation and growth behavior of copper precipitates in low-carbon steels [J]. Metall. Mater. Trans., 2004, 35A: 2323
25 Chen C Y, Li C H, Tsao T C, et al. A novel technique for developing a dual-phase steel with a lower strength difference between ferrite and martensite [J]. Mater. Today Commun., 2020, 23: 100895
26 Goodman S R, Brenner S S, Low J R. An FIM-atom probe study of the precipitation of copper from iron-1.4 at. pct copper. Part I: Field-ion microscopy [J]. Metall. Trans., 1973, 4: 2363
27 Guo H, Cheng J J, Yang S W, et al. Influence of combined Cu and Nb addition on the quenched microstructure and precipitation during tempering in ultra-low carbon steels [J]. J. Alloys Compd., 2013, 577: S619
28 Kao F. Precipitation strengthening of nanometer-sized copper particles and alloy carbides in high strength low alloy steels [D]. Taiwan University, 2008
29 Yang Y, Lu H, Yu C, et al. First-principles calculations of mechanical properties of TiC and TiN [J]. J. Alloys Compd., 2009, 485: 542
30 Yong Q L. Secondary Phase in Steels [M]. Beijing: Metallurgical Industry Press, 2006: 173
雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 173
31 Taylor K A. Solubility products for titanium-, vanadium-, and niobium-carbide in ferrite [J]. Scr. Metall. Mater., 1995, 32: 7
32 Pavlina E J, Speer J G, van Tyne C J. Equilibrium solubility products of molybdenum carbide and tungsten carbide in iron [J]. Scr. Mater., 2012, 66: 243
33 Cahn J W. Nucleation on dislocations [J]. Acta Metall., 1957, 5: 169
34 Yong Q L. Theory of nucleation on dislocations [J]. J. Mater. Sci. Technol., 1990, 6: 239
35 Willens R H, Buehler E, Matthias B T. Superconductivity of the transition-metal carbides [J]. Phys. Rev., 1967, 159: 327
36 Straumanis M E, Yu L S. Lattice parameters, densities, expansion coefficients and perfection of structure of Cu and of Cu-In α phase [J]. Acta Cryst., 1969, 25A: 676
37 Elliott R O, Kempter C P. Thermal expansion of some transition metal carbides [J]. J. Phys. Chem., 1958, 62: 630
38 Krasnenko V, Brik M G. First-principles calculations of hydrostatic pressure effects on the structural, elastic and thermodynamic properties of cubic monocarbides XC (X = Ti, V, Cr, Nb, Mo, Hf) [J]. Solid State Sci., 2012, 14: 1431
39 White G K. Thermal expansion of reference materials: Copper, silica and silicon [J]. J. Phys., 1973, 6D: 2070
40 Moll S H, Ogilvie R E. Solubility and diffusion of titanium in iron [J]. Trans. Metall. Soc. AIME, 1959, 215: 613
41 Smithells C J, Brandes E A. Smithells Metals Reference Book [M]. Oxford: Butterworth-Heinemann, 1992: 13
42 Wang J T, Hodgson P D, Bikmukhametov I, et al. Effects of hot-deformation on grain boundary precipitation and segregation in Ti-Mo microalloyed steels [J]. Mater. Des., 2018, 141: 48
43 Dhara S, Marceau R K W, Wood K, et al. Precipitation and clustering in a Ti-Mo steel investigated using atom probe tomography and small-angle neutron scattering [J]. Mater. Sci. Eng., 2018, A718: 74
44 Timokhina I, Miller M K, Wang J T, et al. On the Ti-Mo-Fe-C atomic clustering during interphase precipitation in the Ti-Mo steel studied by advanced microscopic techniques [J]. Mater. Des., 2016, 111: 222
[1] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[2] XU Kun, WANG Haichuan, KONG Hui, WU Zhaoyang, ZHANG Zhan. Precipitation Kinetics of Al3Sc in Aluminum Alloys Modeled with a New Grouping Cluster Dynamics Model[J]. 金属学报, 2021, 57(6): 822-830.
[3] Rui CHEN,Qingyan XU,Baicheng LIU. MODELLING INVESTIGATION OF PRECIPITATION KINETICS AND STRENGTHENING FOR NEEDLE/ROD-SHAPED PRECIPITATES INAl-Mg-Si ALLOYS[J]. 金属学报, 2016, 52(8): 987-999.
[4] Yong LI,Mingxing GUO,Ning JIANG,Xukai ZHANG,Yan ZHANG,Linzhong ZHUANG,Jishan ZHANG. PRECIPITATION BEHAVIORS AND PREPARATION OF AN ADVANCED Al-0.93Mg-0.78Si-0.20Cu-3.00Zn ALLOY FOR AUTOMOTIVE APPLICATION[J]. 金属学报, 2016, 52(2): 191-201.
[5] WANG Xiaona, HAN Lizhan, GU Jianfeng. PRECIPITATION KINETICS AND YIELD STRENGTH MODEL FOR NZ30K-Mg ALLOY[J]. 金属学报, 2014, 50(3): 355-360.
[6] LIU Wenchang; CHEN Zonglin; XIAO Furen; YAO Mei; WANG Shaogang;LIU Runguang(College of Material Engineering; Yanshan University; Qinhuangdao 066004);(Shenyang Liming Engine Manufacturing Company; Shenyang 110043);(School of Materials Engineering; Harbin Institute of Technology; Harbin 150001)Correspondent:LIU Wenchang;associate professor; Tel: (0335)8057047. EFFECT OF COLD ROLLING ON THE KINETICS OF δ PHASE PRECIPITATION IN INCONEL 718[J]. 金属学报, 1998, 34(10): 1049-1054.
No Suggested Reading articles found!