|
|
Design and Manufacture of Heterostructured Metallic Materials |
ZHANG Xiancheng( ), ZHANG Yong, LI Xiao, WANG Zimeng, HE Chenyun, LU Tiwen, WANG Xiaokun, JIA Yunfei, TU Shantung |
Key Laboratory of Pressure Systems and Safety, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China |
|
Cite this article:
ZHANG Xiancheng, ZHANG Yong, LI Xiao, WANG Zimeng, HE Chenyun, LU Tiwen, WANG Xiaokun, JIA Yunfei, TU Shantung. Design and Manufacture of Heterostructured Metallic Materials. Acta Metall Sin, 2022, 58(11): 1399-1415.
|
Abstract The design and manufacture of heterostructured metallic materials for the balanced improvement of strength and ductility by interior microstructure construction have been the research frontiers and focus in mechanical engineering and materials science. Recently, the understanding of multiple hardening mechanisms in heterostructured metallic materials has progressively advanced. Although establishing quantitative relationships between hardening effects and microstructural parameters and further instructing the research and development of manufacturing for a superior combination between strength and ductility will be of significant value to the design theory, the manufacturing processes and property characterization of heterostructured metallic materials are crucial. In this article, the research progress on the theoretical foundations of designing microstructures and manufacturing processes for heterostructured metallic materials was reviewed. First, the heterostructured metallic materials from the perspective of their microstructural regulation method were categorized. Second, the theoretical foundations for the microstructural regulation of heterostructured materials were reviewed. Third, the manufacturing process for heterostructured materials was classified in terms of the up-bottom and bottom-up approaches as well as reviewed. Finally, the challenges and future development of the design and manufacture of heterostructured metallic materials were addressed.
|
Received: 04 August 2022
|
|
Fund: National Natural Science Foundation of China(51725503) |
About author: ZHANG Xiancheng, professor, Tel: (021)64253149, E-mail: xczhang@ecust.edu.cn
|
1 |
Lu K. The future of metals [J]. Science, 2010, 328: 319
doi: 10.1126/science.1185866
pmid: 20395503
|
2 |
Gunderov D V, Polyakov A V, Semenova I P, et al. Evolution of microstructure, macrotexture and mechanical properties of commercially pure Ti during ECAP-conform processing and drawing [J]. Mater. Sci. Eng., 2013, A562: 128
|
3 |
Zou H H, Zeng X Q, Zhai C Q, et al. Development in strengthening and toughening of magnesium alloys [J]. Mater. Mech. Eng., 2004, 28(5): 1
|
|
邹宏辉, 曾小勤, 翟春泉 等. 镁合金的强韧化进展 [J]. 机械工程材料, 2004, 28(5): 1
|
4 |
Liu P, Kang B X, Cao X G, et al. Coherent strengthening of aging precipitation in rapidly solidified Cu-Cr alloy [J]. Acta Metall. Sin., 1999, 35: 561
|
|
刘 平, 康布熙, 曹兴国 等. 快速凝固Cu-Cr合金时效析出的共格强化效应 [J]. 金属学报, 1999, 35: 561
|
5 |
Yan S, Liu X H, Liu W J, et al. Microstructure, mechanical properties and strengthening mechanisms of a Cu bearing low-carbon steel treated by Q&P process [J]. Acta Metall. Sin., 2013, 49: 917
doi: 10.3724/SP.J.1037.2013.00176
|
|
闫 述, 刘相华, 刘伟杰 等. 含Cu低碳钢Q&P工艺处理的组织性能与强化机理 [J]. 金属学报, 2013, 49: 917
|
6 |
Studart A R. Towards high-performance bioinspired composites [J]. Adv. Mater., 2012, 24: 5024
doi: 10.1002/adma.201201471
|
7 |
Ritchie R O. The conflicts between strength and toughness [J]. Nat. Mater., 2011, 10: 817
doi: 10.1038/nmat3115
pmid: 22020005
|
8 |
Liu X C, Zhang H W, Lu K. Strain-induced ultrahard and ultrastable nanolaminated structure in nickel [J]. Science, 2013, 342: 337
doi: 10.1126/science.1242578
pmid: 24136963
|
9 |
Fan G H, Geng L, Wu H, et al. Improving the tensile ductility of metal matrix composites by laminated structure: A coupled X-ray tomography and digital image correlation study [J]. Scr. Mater., 2017, 135: 63
doi: 10.1016/j.scriptamat.2017.03.030
|
10 |
Sun L G, He X Q, Lu J. Nanotwinned and hierarchical nanotwinned metals: A review of experimental, computational and theoretical efforts [J]. npj Comput. Mater., 2018, 4: 6
doi: 10.1038/s41524-018-0062-2
|
11 |
Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
doi: 10.1073/pnas.1517193112
|
12 |
Zhu Y T, Ameyama K, Anderson P M, et al. Heterostructured materials: Superior properties from hetero-zone interaction [J]. Mater. Res. Lett., 2021, 9: 1
doi: 10.1080/21663831.2020.1796836
|
13 |
Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002, 419: 912
doi: 10.1038/nature01133
|
14 |
Li X Y, Lu L, Li J G, et al. Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys [J]. Nat. Rev. Mater., 2020, 5: 706
doi: 10.1038/s41578-020-0212-2
|
15 |
Misra A, Göken M, Mara N A, et al. Hierarchical and heterogeneous multiphase metallic nanomaterials and laminates [J]. MRS Bull., 2021, 46: 236
doi: 10.1557/s43577-021-00059-7
|
16 |
Sathiyamoorthi P, Kim H S. High-entropy alloys with heterogeneous microstructure: Processing and mechanical properties [J]. Prog. Mater. Sci., 2022, 123: 100709
doi: 10.1016/j.pmatsci.2020.100709
|
17 |
Wu H, Fan G H. An overview of tailoring strain delocalization for strength-ductility synergy [J]. Prog. Mater. Sci., 2020, 113: 100675
doi: 10.1016/j.pmatsci.2020.100675
|
18 |
Li J G, Zhang Q, Huang R R, et al. Towards understanding the structure-property relationships of heterogeneous-structured materials [J]. Scr. Mater., 2020, 186: 304
doi: 10.1016/j.scriptamat.2020.05.013
|
19 |
Lu K. Making strong nanomaterials ductile with gradients [J]. Science, 2014, 345: 1455
doi: 10.1126/science.1255940
pmid: 25237091
|
20 |
Li G D, Morinaka S, Kawabata M, et al. Improvement of strength with maintaining ductility of harmonic structure pure copper by cold rolling and annealing process [J]. Procedia Manuf., 2018, 15: 1641
|
21 |
Wu X L, Zhu Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties [J]. Mater. Res. Lett., 2017, 5: 527
doi: 10.1080/21663831.2017.1343208
|
22 |
Pan Q S, Zhang L X, Feng R, et al. Gradient cell-structured high-entropy alloy with exceptional strength and ductility [J]. Science, 2021, 374: 984
doi: 10.1126/science.abj8114
|
23 |
Duan F H, Lin Y, Pan J, et al. Ultrastrong nanotwinned pure nickel with extremely fine twin thickness [J]. Sci. Adv., 2021, 7: eabg5113
doi: 10.1126/sciadv.abg5113
|
24 |
Shukla S, Choudhuri D, Wang T H, et al. Hierarchical features infused heterogeneous grain structure for extraordinary strength-ductility synergy [J]. Mater. Res. Lett., 2018, 6: 676
doi: 10.1080/21663831.2018.1538023
|
25 |
Yang M X, Yuan F P, Xie Q G, et al. Strain hardening in Fe-16Mn-10Al-0.86C-5Ni high specific strength steel [J]. Acta Mater., 2016, 109: 213
doi: 10.1016/j.actamat.2016.02.044
|
26 |
Huang C X, Wang Y F, Ma X L, et al. Interface affected zone for optimal strength and ductility in heterogeneous laminate [J]. Mater. Today, 2018, 21: 713
doi: 10.1016/j.mattod.2018.03.006
|
27 |
Lu L, Shen Y F, Chen X H, et al. Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304: 422
pmid: 15031435
|
28 |
Wei Y J, Li Y Q, Zhu L C, et al. Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins [J]. Nat. Commun., 2014, 5: 3580
doi: 10.1038/ncomms4580
pmid: 24686581
|
29 |
Liu X C, Zhang H W, Lu K. Formation of nano-laminated structure in nickel by means of surface mechanical grinding treatment [J]. Acta Mater., 2015, 96: 24
doi: 10.1016/j.actamat.2015.06.014
|
30 |
Zhang X Z, Wang Y M, Chen T J, et al. Achieving a heterogeneous lamella-structured aluminum alloy with excellent synergy of strength and ductility by powder thixoforming [J]. Mater. Sci. Eng., 2022, A838: 142781
|
31 |
Zhang X H, Lilleodden E, Wang J. Recent trends on studies of nanostructured metals [J]. MRS Bull., 2021, 46: 217
doi: 10.1557/s43577-021-00069-5
|
32 |
Ovid'ko I A, Valiev R Z, Zhu Y T. Review on superior strength and enhanced ductility of metallic nanomaterials [J]. Prog. Mater. Sci., 2018, 94: 462
doi: 10.1016/j.pmatsci.2018.02.002
|
33 |
Yang M X, Pan Y, Yuan F P, et al. Back stress strengthening and strain hardening in gradient structure [J]. Mater. Res. Lett., 2016, 4: 145
doi: 10.1080/21663831.2016.1153004
|
34 |
Feaugas X. On the origin of the tensile flow stress in the stainless steel AISI 316L at 300 K: Back stress and effective stress [J]. Acta Mater., 1999, 47: 3617
doi: 10.1016/S1359-6454(99)00222-0
|
35 |
Zhu Y T, Wu X L. Perspective on hetero-deformation induced (HDI) hardening and back stress [J]. Mater. Res. Lett., 2019, 7: 393
doi: 10.1080/21663831.2019.1616331
|
36 |
Yang M X, Yan D S, Yuan F P, et al. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength [J]. Proc. Natl. Acad. Sci. USA, 2018, 115: 7224
doi: 10.1073/pnas.1807817115
|
37 |
Wang Y F, Huang C X, Fang X T, et al. Hetero-deformation induced (HDI) hardening does not increase linearly with strain gradient [J]. Scr. Mater., 2020, 174: 19
doi: 10.1016/j.scriptamat.2019.08.022
|
38 |
Zhang Y, Chen H, Jia Y F, et al. A modified kinematic hardening model considering hetero-deformation induced hardening for bimodal structure based on crystal plasticity [J]. Int. J. Mech. Sci., 2021, 191: 106068
doi: 10.1016/j.ijmecsci.2020.106068
|
39 |
Zhao J F, Lu X C, Yuan F P, et al. Multiple mechanism based constitutive modeling of gradient nanograined material [J]. Int. J. Plast., 2020, 125: 314
doi: 10.1016/j.ijplas.2019.09.018
|
40 |
Li J J, Lu W J, Chen S H, et al. Revealing extra strengthening and strain hardening in heterogeneous two-phase nanostructures [J]. Int. J. Plast., 2020, 126: 102626
doi: 10.1016/j.ijplas.2019.11.005
|
41 |
Lu X C, Zhang X, Shi M X, et al. Dislocation mechanism based size-dependent crystal plasticity modeling and simulation of gradient nano-grained copper [J]. Int. J. Plast., 2019, 113: 52
doi: 10.1016/j.ijplas.2018.09.007
|
42 |
Li J J, Weng G J, Chen S H, et al. On strain hardening mechanism in gradient nanostructures [J]. Int. J. Plast., 2017, 88: 89
doi: 10.1016/j.ijplas.2016.10.003
|
43 |
Hill R. The Mathematical Theory of Plasticity [M]. New York: Oxford University Press, 1998: 1
|
44 |
Lin Y, Pan J, Zhou H F, et al. Mechanical properties and optimal grain size distribution profile of gradient grained nickel [J]. Acta Mater., 2018, 153: 279
doi: 10.1016/j.actamat.2018.04.065
|
45 |
He C Y, Yang X F, Chen H, et al. Size-dependent deformation mechanisms in copper gradient nano-grained structure: A molecular dynamics simulation [J]. Mater. Today Commun., 2022, 31: 103198
|
46 |
Cao P H. The strongest size in gradient nanograined metals [J]. Nano Lett., 2020, 20: 1440
doi: 10.1021/acs.nanolett.9b05202
pmid: 31944115
|
47 |
Ma X L, Huang C X, Moering J, et al. Mechanical properties of copper/bronze laminates: Role of interfaces [J]. Acta Mater., 2016, 116: 43
doi: 10.1016/j.actamat.2016.06.023
|
48 |
Zhao J F, Kan Q H, Zhou L C, et al. Deformation mechanisms based constitutive modelling and strength-ductility mapping of gradient nano-grained materials [J]. Mater. Sci. Eng., 2019, A742: 400
|
49 |
Zhao J F, Zaiser M, Lu X C, et al. Size-dependent plasticity of hetero-structured laminates: A constitutive model considering deformation heterogeneities [J]. Int. J. Plast., 2021, 145: 103063
doi: 10.1016/j.ijplas.2021.103063
|
50 |
Shin S, Zhu C Y, Zhang C, et al. Extraordinary strength-ductility synergy in a heterogeneous-structured β-Ti alloy through microstructural optimization [J]. Mater. Res. Lett., 2019, 7: 467
doi: 10.1080/21663831.2019.1652856
|
51 |
Huang J X, Liu Y, Xu T, et al. Dual-phase hetero-structured strategy to improve ductility of a low carbon martensitic steel [J]. Mater. Sci. Eng., 2022, A834: 142584
|
52 |
Liu X L, Xue Q Q, Wang W, et al. Back-stress-induced strengthening and strain hardening in dual-phase steel [J]. Materialia, 2019, 7: 100376
doi: 10.1016/j.mtla.2019.100376
|
53 |
Demeri M Y. Advanced High-Strength Steels: Science, Technology, and Applications [M]. Materials Park: ASM International, 2013: 1
|
54 |
Wu H, Fan G H, Huang M, et al. Deformation behavior of brittle/ductile multilayered composites under interface constraint effect [J]. Int. J. Plast., 2017, 89: 96
doi: 10.1016/j.ijplas.2016.11.005
|
55 |
Huang M, Xu C, Fan G H, et al. Role of layered structure in ductility improvement of layered Ti-Al metal composite [J]. Acta Mater., 2018, 153: 235
doi: 10.1016/j.actamat.2018.05.005
|
56 |
Mishra R S, Haridas R S, Agrawal P. High entropy alloys—Tunability of deformation mechanisms through integration of compositional and microstructural domains [J]. Mater. Sci. Eng., 2021, A812: 141085
|
57 |
Raabe D, Sun B H, Da Silva A K, et al. Current challenges and opportunities in microstructure-related properties of advanced high-strength steels [J]. Metall. Mater. Trans., 2020, 51A: 5517
|
58 |
Sun B H, Ma Y, Vanderesse N, et al. Macroscopic to nanoscopic in situ investigation on yielding mechanisms in ultrafine grained medium Mn steels: Role of the austenite-ferrite interface [J]. Acta Mater., 2019, 178: 10
doi: 10.1016/j.actamat.2019.07.043
|
59 |
Ma Y, Sun B H, Schökel A, et al. Phase boundary segregation-induced strengthening and discontinuous yielding in ultrafine-grained duplex medium-Mn steels [J]. Acta Mater., 2020, 200: 389
doi: 10.1016/j.actamat.2020.09.007
|
60 |
Liu Y F, Cao Y, Mao Q Z, et al. Critical microstructures and defects in heterostructured materials and their effects on mechanical properties [J]. Acta Mater., 2020, 189: 129
doi: 10.1016/j.actamat.2020.03.001
|
61 |
Flipon B, Keller C, Quey R, et al. A full-field crystal-plasticity analysis of bimodal polycrystals [J]. Int. J. Solids Struct., 2020, 184: 178
doi: 10.1016/j.ijsolstr.2019.02.005
|
62 |
Zhang Y, Zhang X C, Jia Y F, et al. High density of interfaces with severely mechanical difference controlled high ductility in heterogeneous materials based on crystal plasticity [J]. Metall. Mater. Trans. A, 2022, DOI: 10.1007/s11661-022-06794-z .
|
63 |
Lu L, Chen X, Huang X, et al. Revealing the maximum strength in nanotwinned copper [J]. Science, 2009, 323: 607
doi: 10.1126/science.1167641
pmid: 19179523
|
64 |
Shen Y F, Lu L, Lu Q H, et al. Tensile properties of copper with nano-scale twins [J]. Scr. Mater., 2005, 52: 989
doi: 10.1016/j.scriptamat.2005.01.033
|
65 |
Wang L H, Du K, Yang C P, et al. In situ atomic-scale observation of grain size and twin thickness effect limit in twin-structural nanocrystalline platinum [J]. Nat. Commun., 2020, 11: 1167
doi: 10.1038/s41467-020-14876-y
pmid: 32127536
|
66 |
Zhang Y, Tao N R, Lu K. Mechanical properties and rolling behaviors of nano-grained copper with embedded nano-twin bundles [J]. Acta Mater., 2008, 56: 2429
doi: 10.1016/j.actamat.2008.01.030
|
67 |
Lu L, Lu K. Metallic materials with nano-scale twins [J]. Acta Metall. Sin., 2010, 46: 1422
doi: 10.3724/SP.J.1037.2010.01422
|
|
卢 磊, 卢 柯. 纳米孪晶金属材料 [J]. 金属学报, 2010, 46: 1422
|
68 |
Zhu Y T, Liao X Z, Wu X L. Deformation twinning in nanocrystalline materials [J]. Prog. Mater. Sci., 2012, 57: 1
doi: 10.1016/j.pmatsci.2011.05.001
|
69 |
Li X Y, Wei Y J, Lu L, et al. Dislocation nucleation governed softening and maximum strength in nano-twinned metals [J]. Nature, 2010, 464: 877
doi: 10.1038/nature08929
|
70 |
Ullman R. Deformation kinetics, A. S. Krausz and H. Eyring, Wiley-Interscience, New York, 1975, 398 pp. $24.95 [Z]. J. Polym. Sci.: Polym. Lett. Ed., 1976: 245
|
71 |
Lu L, Dao M, Zhu T, et al. Size dependence of rate-controlling deformation mechanisms in nanotwinned copper [J]. Scr. Mater., 2009, 60: 1062
doi: 10.1016/j.scriptamat.2008.12.039
|
72 |
Zhao Y H, Liao X Z, Horita Z, et al. Determining the optimal stacking fault energy for achieving high ductility in ultrafine-grained Cu-Zn alloys [J]. Mater. Sci. Eng., 2008, A493: 123
|
73 |
You Z S, Li X Y, Gui L J, et al. Plastic anisotropy and associated deformation mechanisms in nanotwinned metals [J]. Acta Mater., 2013, 61: 217
doi: 10.1016/j.actamat.2012.09.052
|
74 |
Zhang S, Zhou J Q, Wang L, et al. Effect of twin boundaries on nanovoid growth based on dislocation emission [J]. Mater. Sci. Eng., 2013, A582: 29
|
75 |
Sun L G, He X Q, Zhu L L, et al. Two softening stages in nanotwinned Cu [J]. Philos. Mag., 2014, 94: 4037
doi: 10.1080/14786435.2014.977368
|
76 |
Zhu L L, Qu S X, Guo X, et al. Analysis of the twin spacing and grain size effects on mechanical properties in hierarchically nanotwinned face-centered cubic metals based on a mechanism-based plasticity model [J]. J. Mech. Phys. Solids, 2015, 76: 162
doi: 10.1016/j.jmps.2014.12.001
|
77 |
Yuan F P, Wu X L. Size effects of primary/secondary twins on the atomistic deformation mechanisms in hierarchically nanotwinned metals [J]. J. Appl. Phys., 2013, 113: 203516
doi: 10.1063/1.4808096
|
78 |
Zhu L L, Kou H N, Lu J. On the role of hierarchical twins for achieving maximum yield strength in nanotwinned metals [J]. Appl. Phys. Lett., 2012, 101: 081906
|
79 |
Li L, Zhu Y L. Microstructure characteristics of ultrasound-aided deep rolling treated Ti6Al4V alloy [J]. Rare Met. Mater. Eng., 2010, 39: 1754
|
|
李 礼, 朱有利. Ti6Al4V合金超声深滚层的组织结构特征 [J]. 稀有金属材料与工程, 2010, 39: 1754
|
80 |
Lapovok R, Orlov D, Timokhina I B, et al. Asymmetric rolling of interstitial-free steel using one idle roll [J]. Metall. Mater. Trans., 2012, 43A: 1328
|
81 |
Dehm G, Jaya B N, Raghavan R, et al. Overview on micro- and nanomechanical testing: New insights in interface plasticity and fracture at small length scales [J]. Acta Mater., 2018, 142: 248
doi: 10.1016/j.actamat.2017.06.019
|
82 |
Gao H L, Chen S M, Mao L B, et al. Mass production of bulk artificial nacre with excellent mechanical properties [J]. Nat. Commun., 2017, 8: 287
doi: 10.1038/s41467-017-00392-z
|
83 |
Hosemann P, Shin C, Kiener D. Small scale mechanical testing of irradiated materials [J]. J. Mater. Res., 2015, 30: 1231
doi: 10.1557/jmr.2015.26
|
84 |
Yang Z, Zheng J Y, Zhan K, et al. Surface characteristic and wear resistance of S960 high-strength steel after shot peening combing with ultrasonic sprayed graphene oxide coating [J]. J. Mater. Res. Technol., 2022, 18: 978
doi: 10.1016/j.jmrt.2022.02.124
|
85 |
Jayalakshmi M, Huilgol P, Bhat B R, et al. Insights into formation of gradient nanostructured (GNS) layer and deformation induced martensite in AISI 316 stainless steel subjected to severe shot peening [J]. Surf. Coat. Technol., 2018, 344: 295
doi: 10.1016/j.surfcoat.2018.03.028
|
86 |
Lu K, Lu J. Surface nanocrystallization (SNC) of metallic materials—Presentation of the concept behind a new approach [J]. J. Mater. Sci. Technol., 1999, 15: 193
doi: 10.1179/026708399101505581
|
87 |
Lu K, Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment [J]. Mater. Sci. Eng., 2004, A375-377: 38
|
88 |
Li W L, Tao N R, Lu K. Fabrication of a gradient nano-microstructured surface layer on bulk copper by means of a surface mechanical grinding treatment [J]. Scr. Mater., 2008, 59: 546
doi: 10.1016/j.scriptamat.2008.05.003
|
89 |
Chui P F, Sun K N, Sun C, et al. Effect of surface nanocrystallization induced by fast multiple rotation rolling on mechanical properties of a low carbon steel [J]. Mater. Des., 2012, 35: 754
doi: 10.1016/j.matdes.2011.10.042
|
90 |
Wang T, Wang D P, Liu G, et al. Investigations on the nanocrystallization of 40Cr using ultrasonic surface rolling processing [J]. Appl. Surf. Sci., 2008, 255: 1824
doi: 10.1016/j.apsusc.2008.06.034
|
91 |
Geng J L, Yan Z F, Zhang H X, et al. Effect of ultrasonic surface rolling process on microstructure and properties of AZ31B magnesium alloy [J]. Surf. Technol., 2022, 51(1): 368
|
|
耿纪龙, 闫志峰, 张红霞 等. 超声表面滚压处理对AZ31B镁合金组织和性能的影响 [J]. 表面技术, 2022, 51(1): 368
|
92 |
Zhang Y L, Lai F Q, Qu S G, et al. Effect of ultrasonic surface rolling on microstructure and rolling contact fatigue behavior of 17Cr2Ni2MoVNb steel [J]. Surf. Coat. Technol., 2019, 366: 321
doi: 10.1016/j.surfcoat.2019.03.061
|
93 |
Cao X J, Pyoun Y S, Murakami R. Fatigue properties of a S45C steel subjected to ultrasonic nanocrystal surface modification [J]. Appl. Surf. Sci., 2010, 256: 6297
doi: 10.1016/j.apsusc.2010.04.007
|
94 |
Zhang K M, Wang J, Liu Y X, et al. Active and passive compliant force control of ultrasonic surface rolling process on a curved surface [J]. Chin. J. Aeronaut., 2022, 35: 289
doi: 10.1016/j.cja.2021.08.018
|
95 |
Zhang C, Wang Y F, Lv H Y, et al. Enhanced load transfer and ductility in Al-9Ce alloy through heterogeneous lamellar microstructure design by cold rolling and annealing [J]. Mater. Sci. Eng., 2021, A821: 141591
|
96 |
Moazzen P, Toroghinejad M R. Enhancement of mechanical properties of a novel single phase Ni1.5FeCrCu0.5 HEA through cold rolling and subsequent annealing [J]. Mater. Sci. Eng., 2022, A848: 143360
|
97 |
Sabooni S, Karimzadeh F, Enayati M H, et al. The role of martensitic transformation on bimodal grain structure in ultrafine grained AISI 304L stainless steel [J]. Mater. Sci. Eng., 2015, A636: 221
|
98 |
Babapour A, Hosseinipour S J, Jamaati R, et al. Effect of antimony addition and asymmetric cold rolling on the texture and magnetic properties of a 1.2% Si steel [J]. J. Magn. Magn. Mater., 2022, 554: 169258
doi: 10.1016/j.jmmm.2022.169258
|
99 |
Ren X W, Huang Y C, Liu Y, et al. Evolution of microstructure, texture, and mechanical properties in a twin-roll cast AA6016 sheet after asymmetric rolling with various velocity ratios between top and bottom rolls [J]. Mater. Sci. Eng., 2020, A788: 139448
|
100 |
Oliveira P H F, Magalhães D C C, Unti L F K, et al. Tailoring the microstructure of a Cu-0.7Cr-0.07Zr alloy submitted to ECAP at cryogenic temperature for improved thermal stability [J]. Mater. Charact., 2022, 190: 112045
doi: 10.1016/j.matchar.2022.112045
|
101 |
Sun C, Liu H, Wang C, et al. Anisotropy investigation of an ECAP-processed Mg-Al-Ca-Mn alloy with synergistically enhanced mechanical properties and corrosion resistance [J]. J. Alloys Compd., 2022, 911: 165046
doi: 10.1016/j.jallcom.2022.165046
|
102 |
Li L Y, Ou L, Fan C H, et al. Research progress of accumulative roll bonding [J]. Packaging J., 2021, 13(4): 70
|
|
李林艳, 欧 玲, 范才河 等. 累积叠轧技术研究进展 [J]. 包装学报, 2021, 13(4): 70
|
103 |
Ma X L, Huang C X, Xu W Z, et al. Strain hardening and ductility in a coarse-grain/nanostructure laminate material [J]. Scr. Mater., 2015, 103: 57
doi: 10.1016/j.scriptamat.2015.03.006
|
104 |
Cheng Z, Zhou H F, Lu Q H, et al. Extra strengthening and work hardening in gradient nanotwinned metals [J]. Science, 2018, 362: eaau1925
doi: 10.1126/science.aau1925
|
105 |
Aliofkhazraei M, Walsh F C, Zangari G, et al. Development of electrodeposited multilayer coatings: A review of fabrication, microstructure, properties and applications [J]. Appl. Surf. Sci. Adv., 2021, 6: 100141
doi: 10.1016/j.apsadv.2021.100141
|
106 |
Daryadel S, Behroozfar A, Morsali S R, et al. Localized pulsed electrodeposition process for three-dimensional printing of nanotwinned metallic nanostructures [J]. Nano Lett., 2018, 18: 208
doi: 10.1021/acs.nanolett.7b03930
pmid: 29257699
|
107 |
Ameyama K, Cazes F, Couque H, et al. Harmonic structure, a promising microstructure design [J]. Mater. Res. Lett., 2022, 10: 440
doi: 10.1080/21663831.2022.2057203
|
108 |
Tan C L, Chew Y, Weng F, et al. Laser aided additive manufacturing of spatially heterostructured steels [J]. Int. J. Mach. Tools Manuf., 2022, 172: 103817
doi: 10.1016/j.ijmachtools.2021.103817
|
109 |
Shen X X, Lian J S, Jiang Z H, et al. High strength and high ductility of electrodeposited nanocrystalline Ni with a broad grain size distribution [J]. Mater. Sci. Eng., 2008, A487: 410
|
110 |
Shen X, Lian J, Jiang Z, et al. The optimal grain sized nanocrystalline Ni with high strength and good ductility fabricated by a direct current electrodeposition [J]. Adv. Eng. Mater., 2008, 10: 539
doi: 10.1002/adem.200800009
|
111 |
You Z S, Lu L, Lu K. Tensile behavior of columnar grained Cu with preferentially oriented nanoscale twins [J]. Acta Mater., 2011, 59: 6927
doi: 10.1016/j.actamat.2011.07.044
|
112 |
Xue Z M, Zhu Z W, Zhan X F, et al. Manipulating the microstructure of Cu from direct current electrodeposition without additives to overcome the strength-ductility trade-off [J]. Mater. Sci. Eng., 2022, A849: 143499
|
113 |
Zhang Q, Liu Y, Liu Y S, et al. Enhanced tensile ductility and strength of electrodeposited ultrafine-grained nickel with a desired bimodal microstructure [J]. Mater. Sci. Eng., 2017, A701: 196
|
114 |
Cui R H, Yu Z M, He Y T, et al. Copper multilayer coating prepared by ultrasonic-electrodeposition [J]. Adv. Mater. Res., 2010, 97-101: 1348
|
115 |
Ota M, Vajpai S K, Imao R, et al. Application of high pressure gas jet mill process to fabricate high performance harmonic structure designed pure titanium [J]. Mater. Trans., 2015, 56: 154
doi: 10.2320/matertrans.M2014280
|
116 |
Nukui Y, kubozono H, kikuchi S, et al. Fractographic analysis of fatigue crack initiation and propagation in CP titanium with a bimodal harmonic structure [J]. Mater. Sci. Eng., 2018, A716: 228
|
117 |
Vajpai S K, Ota M, Zhang Z, et al. Three-dimensionally gradient harmonic structure design: An integrated approach for high performance structural materials [J]. Mater. Res. Lett., 2016, 4: 191
doi: 10.1080/21663831.2016.1218965
|
118 |
Yang L B, Ren X N, Ge C C, et al. Status and development of powder metallurgy nickel-based disk superalloys [J]. Int. J. Mater. Res., 2019, 110: 901
doi: 10.3139/146.111820
|
119 |
Sharma B, Dirras G, Ameyama K. Harmonic structure design: A strategy for outstanding mechanical properties in structural materials [J]. Metals, 2020, 10: 1615
doi: 10.3390/met10121615
|
120 |
Torralba J M, Alvaredo P, García-Junceda A. Powder metallurgy and high-entropy alloys: Update on new opportunities [J]. Powder Metall., 2020, 63: 227
doi: 10.1080/00325899.2020.1807713
|
121 |
Vajpai S K, Ota M, Watanabe T, et al. The development of high performance Ti-6Al-4V alloy via a unique microstructural design with bimodal grain size distribution [J]. Metall. Mater. Trans., 2015, 46A: 903
|
122 |
Wang X, Li J, Cazes F, et al. Numerical modeling on strengthening mechanisms of the harmonic structured design on CP-Ti and Ti-6Al-4V [J]. Int. J. Plast., 2020, 133: 102793
doi: 10.1016/j.ijplas.2020.102793
|
123 |
Fu X W, Tan Z Q, Min X R, et al. Trimodal grain structure enables high-strength CNT/Al-Cu-Mg composites higher ductility by powder assembly & alloying [J]. Mater. Res. Lett., 2021, 9: 50
doi: 10.1080/21663831.2020.1818324
|
124 |
Lu T W, Yao N, Chen H, et al. Exceptional strength-ductility combination of additively manufactured high-entropy alloy matrix composites reinforced with TiC nanoparticles at room and cryogenic temperatures [J]. Addit. Manuf., 2022, 56: 102918
|
125 |
Yao N, Lu T W, Feng K, et al. Ultrastrong and ductile additively manufactured precipitation-hardening medium-entropy alloy at ambient and cryogenic temperatures [J]. Acta Mater., 2022, 236: 118142
doi: 10.1016/j.actamat.2022.118142
|
126 |
Sagong M J, Kim E S, Park J M, et al. Interface characteristics and mechanical behavior of additively manufactured multi-material of stainless steel and Inconel [J]. Mater. Sci. Eng., 2022, A847: 143318
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|