|
|
Machine Learning for Materials Research and Development |
XIE Jianxin1( ), SU Yanjing1( ), XUE Dezhen2, JIANG Xue1, FU Huadong1, HUANG Haiyou1 |
1.Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China 2.State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China |
|
Cite this article:
XIE Jianxin, SU Yanjing, XUE Dezhen, JIANG Xue, FU Huadong, HUANG Haiyou. Machine Learning for Materials Research and Development. Acta Metall Sin, 2021, 57(11): 1343-1361.
|
Abstract The rapid advancement of big data and artificial intelligence has resulted in new data-driven materials research and development (R&D), which has achieved substantial progress. This fourth paradigm is believed to improve materials design efficiency and industrialized application and stimulate the discovery of new materials. The focus of this work is on the emerging field of machine learning-assisted material R&D, with an emphasis on machine learning predictions and optimization design. Following a brief description of feature construction and selection, recent developments in material predictions on phases/structures, processing-structure-property relationships, microstructure, and material performance are reviewed. This paper also summarizes the research progress on optimization algorithms with machine learning models, which is expected to overcome the bottlenecks such as the small size and high noise level of material data samples and huge space for exploration. The challenges and future opportunities for machine learning applications in materials R&D are discussed and prospected.
|
Received: 25 August 2021
|
|
About author: SU Yanjing, professor, Tel: (010)62333884, E-mail: yjsu@ustb.edu.cn XIE Jianxin, professor, Tel: (010)62332254, E-mail: jxxie@mater.ustb.edu.cn
|
1 |
Agrawal A, Choudhary A. Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science [J]. APL Mater., 2016, 4: 053208
|
2 |
Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China [J]. Acta Metall. Sin., 2020, 56: 1313
|
|
宿彦京, 付华栋, 白 洋等. 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
|
3 |
Hart G L W, Mueller T, Toher C, et al. Machine learning for alloys [J]. Nat. Rev. Mater., 2021, 6: 730
|
4 |
Lookman T, Balachandran P V, Xue D Z, et al. Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design [J]. npj Comput. Mater., 2019, 5: 21
|
5 |
Schmidt J, Marques M R G, Botti S, et al. Recent advances and applications of machine learning in solid-state materials science [J]. npj Comput. Mater., 2019, 5: 83
|
6 |
Liu Y L, Niu C, Wang Z, et al. Machine learning in materials genome initiative: A review [J]. J. Mater. Sci. Technol., 2020, 57: 113
|
7 |
Chen C, Zuo Y X, Ye W K, et al. A critical review of machine learn-ing of energy materials [J]. Adv. Energy Mater., 2020, 10: 1903242
|
8 |
Ramprasad R, Batra R, Pilania G, et al. Machine learning in materials informatics: Recent applications and prospects [J]. npj Comput. Mater., 2017, 3: 54
|
9 |
Batra R, Song L, Ramprasad R. Emerging materials intelligence ecosystems propelled by machine learning [J]. Nat. Rev. Mater., 2021, 6: 655
|
10 |
Rickman J M, Lookman T, Kalinin S V. Materials informatics: From the atomic-level to the continuum [J]. Acta Mater., 2019, 168: 473
|
11 |
Ward L, Aykol M, Blaiszik B, et al. Strategies for accelerating the adoption of materials informatics [J]. MRS Bull., 2018, 43: 683
|
12 |
Song Z L, Chen X W, Meng F B, et al. Machine learning in materials design: Algorithm and application [J]. Chin. Phys., 2020, 29 B: 116103
|
13 |
Zhang H T, Fu H D, He X Q, et al. Dramatically enhanced combina-tion of ultimate tensile strength and electric conductivity of alloys via machine learning screening [J]. Acta Mater., 2020, 200: 803
|
14 |
Pattanayak S, Dey S, Chatterjee S, et al. Computational intelligence based designing of microalloyed pipeline steel [J]. Comput. Mater. Sci., 2015, 104: 60
|
15 |
Weng B C, Song Z L, Zhu R L, et al. Simple descriptor derived from symbolic regression accelerating the discovery of new perovskite catalysts [J]. Nat. Commun., 2020, 11: 3513
|
16 |
Wang X X, Wang C X, Ci S N, et al. Accelerating 2D MXene catalyst discovery for the hydrogen evolution reaction by computer-driven workflow and an ensemble learning strategy [J]. J. Mater. Chem., 2020, 8A: 23488
|
17 |
Oliynyk A O, Antono E, Sparks T D, et al. High-throughput machine-learning-driven synthesis of Full-Heusler compounds [J]. Chem. Mater., 2016, 28: 7324
|
18 |
Pilania G, Mannodi-Kanakkithodi A, Uberuaga B P, et al. Machine learning bandgaps of double perovskites [J]. Sci. Rep., 2016, 6: 19375
|
19 |
Qin Z J, Wang Z, Wang Y Q, et al. Phase prediction of Ni-base superalloys via high-throughput experiments and machine learning [J]. Mater. Res. Lett., 2021, 9: 32
|
20 |
Zou M, Li W D, Li L F, et al. Machine learning assisted design approach for developing γ′-strengthened Co-Ni-base superalloys [A]. Superalloys2020 [M]. Cham: Springer, 2020: 937
|
21 |
Yu J X, Guo S, Chen Y C, et al. A two-stage predicting model for γ′ solvus temperature of L12-strengthened Co-base superalloys based on machine learning [J]. Intermetallics, 2019, 110: 106466
|
22 |
Li Y, Guo W L. Machine-learning model for predicting phase forma-tions of high-entropy alloys [J]. Phys. Rev. Mater., 2019, 3: 095005
|
23 |
Zhou Z Q, Zhou Y J, He Q F, et al. Machine learning guided appraisal and exploration of phase design for high entropy alloys [J]. npj Comput. Mater., 2019, 5: 128
|
24 |
Kaufmann K, Vecchio K S. Searching for high entropy alloys: A machine learning approach [J]. Acta Mater., 2020, 198: 178
|
25 |
Lee S Y, Byeon S, Kim H S, et al. Deep learning-based phase prediction of high-entropy alloys: Optimization, generation, and explanation [J]. Mater. Des., 2021, 197: 109260
|
26 |
Risal S, Zhu W H, Guillen P, et al. Improving phase prediction accuracy for high entropy alloys with machine learning [J]. Comput. Mater. Sci., 2021, 192: 110389
|
27 |
Roy A, Balasubramanian G. Predictive descriptors in machine learning and data-enabled explorations of high-entropy alloys [J]. Comput. Mater. Sci., 2021, 193: 110381
|
28 |
Krishna Y V, Jaiswal U K, Rahul M R. Machine learning approach to predict new multiphase high entropy alloys [J]. Scr. Mater., 2021, 197: 113804
|
29 |
Jaiswal U K, Krishna Y V, Rahul M R, et al. Machine learning-enabled identification of new medium to high entropy alloys with solid solution phases [J]. Comput. Mater. Sci., 2021, 197: 110623
|
30 |
Yan Y G, Lu D, Wang K. Accelerated discovery of single-phase refractory high entropy alloys assisted by machine learning [J]. Comput. Mater. Sci., 2021, 199: 110723
|
31 |
Huang W J, Martin P, Zhuang H L. Machine-learning phase prediction of high-entropy alloys [J]. Acta Mater., 2019, 169: 225
|
32 |
Zhang Y, Wen C, Wang C X, et al. Phase prediction in high entropy alloys with a rational selection of materials descriptors and machine learning models [J]. Acta Mater., 2020, 185: 528
|
33 |
Xiong J, Zhang T Y, Shi S Q. Machine learning prediction of elastic properties and glass-forming ability of bulk metallic glasses [J]. MRS Commun., 2019, 9: 576
|
34 |
Xiong J, Shi S Q, Zhang T Y. Machine learning prediction of glass-forming ability in bulk metallic glasses [J]. Comput. Mater. Sci., 2021, 192: 110362
|
35 |
Xiong J, Shi S Q, Zhang T Y. A machine-learning approach to predicting and understanding the properties of amorphous metallic alloys [J]. Mater. Des., 2020, 187: 108378
|
36 |
Ward L, O'Keeffe S C, Stevick J, et al. A machine learning approach for engineering bulk metallic glass alloys [J]. Acta Mater., 2018, 159: 102
|
37 |
Tripathi M K, Chattopadhyay P P, Ganguly S. Multivariate analysis and classification of bulk metallic glasses using principal component analysis [J]. Comput. Mater. Sci., 2015, 107: 79
|
38 |
Sun Y T, Bai H Y, Li M Z, et al. Machine learning approach for prediction and understanding of glass-forming ability [J]. J. Phys. Chem. Lett., 2017, 8: 3434
|
39 |
Laws K J, Miracle D B, Ferry M. A predictive structural model for bulk metallic glasses [J]. Nat. Commun., 2015, 6: 8123
|
40 |
Cai A H, Xiong X, Liu Y, et al. Artificial neural network modeling for undercooled liquid region of glass forming alloys [J]. Comput. Mater. Sci., 2010, 48: 109
|
41 |
Ren F, Ward L, Williams T, et al. Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments [J]. Sci. Adv., 2018, 4: eaaq1566
|
42 |
Li Y P, Liu Y Y, Luo S H, et al. Neural network model for correlating microstructural features and hardness properties of nickel-based superalloys [J]. J. Mater. Res. Technol., 2020, 9: 14467
|
43 |
Fu C, Chen Y D, Li L F, et al. Evaluation of service conditions of high pressure turbine blades made of DS Ni-base superalloy by artificial neural networks [J]. Mater. Today Commun., 2020, 22: 100838
|
44 |
Jiang X, Yin H Q, Zhang C, et al. An materials informatics approach to Ni-based single crystal superalloys lattice misfit prediction [J]. Comput. Mater. Sci., 2018, 143: 295
|
45 |
Jung I D, Shin D S, Kim D, et al. Artificial intelligence for the prediction of tensile properties by using microstructural parameters in high strength steels [J]. Materialia, 2020, 11: 100699
|
46 |
Gebhardt C, Trimborn T, Weber F, et al. Simplified ResNet approach for data driven prediction of microstructure-fatigue relationship [J]. Mech. Mater., 2020, 151: 103625
|
47 |
Herriott C, Spear A D. Predicting microstructure-dependent mechanical properties in additively manufactured metals with machine- and deep-learning methods [J]. Comput. Mater. Sci., 2020, 175: 109599
|
48 |
Kondo R, Yamakawa S, Masuoka Y, et al. Microstructure recognition using convolutional neural networks for prediction of ionic conductivity in ceramics [J]. Acta Mater., 2017, 141: 29
|
49 |
Wang C C, Shen C G, Cui Q, et al. Tensile property prediction by feature engineering guided machine learning in reduced activation ferritic/martensitic steels [J]. J. Nucl. Mater., 2020, 529: 151823
|
50 |
Guo S, Yu J X, Liu X J, et al. A predicting model for properties of steel using the industrial big data based on machine learning [J]. Comput. Mater. Sci., 2019, 160: 95
|
51 |
Ozerdem M S, Kolukisa S. Artificial neural network approach to predict mechanical properties of hot rolled, nonresulfurized, AISI 10xx series carbon steel bars [J]. J. Mater. Process. Technol., 2008, 199: 437
|
52 |
Guo Z L, Sha W D. Modelling the correlation between processing parameters and properties of maraging steels using artificial neural network [J]. Comput. Mater. Sci., 2004, 29: 12
|
53 |
Li X Y, Roth C C, Mohr D. Machine-learning based temperature- and rate-dependent plasticity model: Application to analysis of fracture experiments on DP steel [J]. Int. J. Plast., 2019, 118: 320
|
54 |
Xu X N, Wang L Y, Zhu G M, et al. Predicting tensile properties of AZ31 magnesium alloys by machine learning [J]. JOM, 2020, 72: 3935
|
55 |
Liu B, Tang A T, Pan F S, et al. Mechanical property prediction model of AZ31 magnesium alloys based on an artificial neural network with parameter optimization [J]. J. Chongqing Univ., 2011, 34(3): 44
|
|
刘 彬, 汤爱涛, 潘复生等. 基于参数优化的人工神经网络的AZ31镁合金力学性能预测模型 [J]. 重庆大学学报, 2011, 34(3): 44
|
56 |
Li N, Zhao S Y, Zhang Z G. Property prediction of medical magnesium alloy based on machine learning [A]. Proceedings of the 2021 IEEE 6th International Conference on Big Data Analytics (ICBDA) [C]. Xiamen, IEEE, 2021: 51
|
57 |
Chaudry U M, Hamad K, Abuhmed T. Machine learning-aided design of aluminum alloys with high performance [J]. Mater. Today Commun., 2021, 26: 101897
|
58 |
Cao X Y, Zhang Y B, Chen H. Predicting mechanical properties and corrosion resistance of heat-treated 7N01 aluminum alloy by machine learning methods [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2020, 774: 012030
|
59 |
Malinov S, Sha W, Mckeown J J. Modelling the correlation between processing parameters and properties in titanium alloys using artificial neural network [J]. Comput. Mater. Sci., 2001, 21: 375
|
60 |
Oh J M, Narayana P L, Hong J K, et al. Property optimization of TRIP Ti alloys based on artificial neural network [J]. J. Alloys Compd., 2021, 884: 161029
|
61 |
Yang F, Li Z, Wang Q, et al. Cluster-formula-embedded machine learning for design of multicomponent β-Ti alloys with low Young's modulus [J]. npj Comput. Mater., 2020, 6: 101
|
62 |
Wu C T, Chang H T, Wu C Y, et al. Machine learning recommends affordable new Ti alloy with bone-like modulus [J]. Mater. Today, 2020, 34: 41
|
63 |
Xia X, Nie J F, Davies C H J, et al. An artificial neural network for predicting corrosion rate and hardness of magnesium alloys [J]. Mater. Des., 2016, 90: 1034
|
64 |
Wen Y F, Cai C Z, Liu X H, et al. Corrosion rate prediction of 3C steel under different seawater environment by using support vector regression [J]. Corros. Sci., 2009, 51: 349
|
65 |
Fang S F, Wang M P, Qi W H, et al. Hybrid genetic algorithms and support vector regression in forecasting atmospheric corrosion of metallic materials [J]. Comput. Mater. Sci., 2008, 44: 647
|
66 |
Cavanaugh M K, Buchheit R G, Birbilis N. Modeling the environmental dependence of pit growth using neural network approaches [J]. Corros. Sci., 2010, 52: 3070
|
67 |
Diao Y P, Yan L C, Gao K W. Improvement of the machine learning-based corrosion rate prediction model through the optimization of input features [J]. Mater. Des., 2021, 198: 109326
|
68 |
Shi J B, Wang J H, Macdonald D D. Prediction of primary water stress corrosion crack growth rates in Alloy 600 using artificial neural networks [J]. Corros. Sci., 2015, 92: 217
|
69 |
Agrawal A, Deshpande P D, Cecen A, et al. Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters [J]. Integr. Mater. Manuf. Innov., 2014, 3: 90
|
70 |
Kamble R G, Raykar N R, Jadhav D N. Machine learning approach to predict fatigue crack growth [J]. Mater. Today: Proc., 2021, 38: 2506
|
71 |
He L, Wang Z L, Akebono H, et al. Machine learning-based predictions of fatigue life and fatigue limit for steels [J]. J. Mater. Sci. Technol., 2021, 90: 9
|
72 |
Liu Y, Wu J M, Wang Z C, et al. Predicting creep rupture life of Ni-based single crystal superalloys using divide-and-conquer approach based machine learning [J]. Acta Mater., 2020, 195: 454
|
73 |
Shin D, Yamamoto Y, Brady M P, et al. Modern data analytics approach to predict creep of high-temperature alloys [J]. Acta Mater., 2019, 168: 321
|
74 |
Hu X B, Wang J C, Wang Y Y, et al. Two-way design of alloys for advanced ultra supercritical plants based on machine learning [J]. Comput. Mater. Sci., 2018, 155: 331
|
75 |
Kong C S, Luo W, Arapan S, et al. Information-theoretic approach for the discovery of design rules for crystal chemistry [J]. J. Chem. Inf. Model., 2012, 52: 1812
|
76 |
Xue D Z, Xue D Q, Yuan R H, et al. An informatics approach to transformation temperatures of NiTi-based shape memory alloys [J]. Acta Mater., 2017, 125: 532
|
77 |
Raccuglia P, Elbert K C, Adler P D F, et al. Machine-learning-assisted materials discovery using failed experiments [J]. Nature, 2016, 533: 73
|
78 |
Iwasaki Y, Sawada R, Stanev V, et al. Identification of advanced spin-driven thermoelectric materials via interpretable machine learning [J]. npj Comput. Mater., 2019, 5: 103
|
79 |
Wu Q F, Wang Z J, Hu X B, et al. Uncovering the eutectics design by machine learning in the Al-Co-Cr-Fe-Ni high entropy system [J]. Acta Mater., 2020, 182: 278
|
80 |
Wen C, Wang C X, Zhang Y, et al. Modeling solid solution strengthening in high entropy alloys using machine learning [J]. Acta Mater., 2021, 212: 116917
|
81 |
Si S P, Fan B J, Liu X W, et al. Study on strengthening effects of Zr-Ti-Nb-O alloys via high throughput powder metallurgy and data-driven machine learning [J]. Mater. Des., 2021, 206: 109777
|
82 |
Xie Q, Suvarna M, Li J L, et al. Online prediction of mechanical properties of hot rolled steel plate using machine learning [J]. Mater. Des., 2021, 197: 109201
|
83 |
Loftis C, Yuan K P, Zhao Y, et al. Lattice thermal conductivity prediction using symbolic regression and machine learning [J]. J. Phys. Chem., 2021, 125A: 435
|
84 |
Yuan F L, Mueller T. Identifying models of dielectric breakdown strength from high-throughput data via genetic programming [J]. Sci. Rep., 2017, 7: 17594
|
85 |
Wei Q H, Xiong J, Sun S, et al. Multi-objective machine learning of four mechanical properties of steels [J]. Sci. Sin. Technol., 2021, 51: 722
|
|
魏清华, 熊 杰, 孙 升等. 多目标机器学习钢的四种力学性能 [J]. 中国科学: 技术科学, 2021, 51: 722
|
86 |
Jones D R, Schonlau M, Welch W J. Efficient global optimization of expensive black-box functions [J]. J. Glob. Optim., 1998, 13: 455
|
87 |
de Jong M, Chen W, Notestine R, et al. A statistical learning framework for materials science: application to elastic moduli of k-nary inorganic polycrystalline compounds [J]. Sci. Rep., 2016, 6: 34256
|
88 |
Frazier P I. A tutorial on Bayesian optimization [J]. arXiv: 1807.02811, 2018
|
89 |
Xue D Z, Balachandran P V, Hogden J, et al. Accelerated search for materials with targeted properties by adaptive design [J]. Nat. Commun., 2016, 7: 11241
|
90 |
Wen C, Zhang Y, Wang C X, et al. Machine learning assisted design of high entropy alloys with desired property [J]. Acta Mater., 2019, 170: 109
|
91 |
Li J H, Zhang Y B, Cao X Y, et al. Accelerated discovery of high-strength aluminum alloys by machine learning [J]. Commun. Mater., 2020, 1: 73
|
92 |
Liu Y W, Wang L Y, Zhang H, et al. Accelerated development of high-strength magnesium alloys by machine learning [J]. Metall. Mater. Trans., 2021, 52A: 943
|
93 |
Zhao W C, Zheng C, Xiao B, et al. Composition refinement of 6061 aluminum alloy using active machine learning model based on bayesian optimization sampling [J]. Acta Metall. Sin., 2021, 57: 797
|
|
赵婉辰, 郑 晨, 肖 斌等. 基于Bayesian采样主动机器学习模型的6061铝合金成分精细优化 [J]. 金属学报, 2021, 57: 797
|
94 |
Xue D Z, Balachandran P V, Yuan R H, et al. Accelerated search for BaTiO3-based piezoelectrics with vertical morphotropic phase boundary using Bayesian learning [J]. Proc. Natl. Acad. Sci. USA, 2016, 113: 13301
|
95 |
Yuan R H, Liu Z, Balachandran P V, et al. Accelerated discovery of large electrostrains in BaTiO3-based piezoelectrics using active learnIng [J]. Adv. Mater., 2018, 30: 1702884
|
96 |
Yuan R H, Tian Y, Xue D Z, et al. Accelerated search for BaTiO3-based ceramics with large energy storage at low fields using machine learning and experimental design [J]. Adv. Sci., 2019, 6: 1901395
|
97 |
Verduzco J C, Marinero E E, Strachan A. An active learning approach for the design of doped LLZO ceramic garnets for battery applications [J]. Integr. Mater. Manuf. Innov., 2021, 10: 299
|
98 |
Nugraha A S, Lambard G, Na J, et al. Mesoporous trimetallic PtPdAu alloy films toward enhanced electrocatalytic activity in methanol oxidation: Unexpected chemical compositions discovered by Bayesian optimization [J]. J. Mater. Chem., 2020, 8A: 13532
|
99 |
Langner S, Häse F, Perea J D, et al. Beyond ternary OPV: High-throughput experimentation and self-driving laboratories optimize multicomponent systems [J]. Adv. Mater., 2020, 32: 1907801
|
100 |
Miyagawa S, Gotoh K, Kutsukake K, et al. Application of Bayesian optimization for improved passivation performance in TiOx/SiOy/c-Si heterostructure by hydrogen plasma treatment [J]. Appl. Phys. Express, 2021, 14: 025503
|
101 |
Haghanifar S, McCourt M, Cheng B L, et al. Creating glasswing butterfly-inspired durable antifogging superomniphobic supertransmissive, superclear nanostructured glass through Bayesian learning and optimization [J]. Mater. Horiz., 2019, 6: 1632
|
102 |
Attia P M, Grover A, Jin N, et al. Closed-loop optimization of fast-charging protocols for batteries with machine learning [J]. Nature, 2020, 578: 397
|
103 |
Wang X K, Rai N, Pereira B M P, et al. Accelerated knowledge discovery from omics data by optimal experimental design [J]. Nat. Commun., 2020, 11: 611
|
104 |
Ju S H, Shiga T, Feng L, et al. Designing nanostructures for phonon transport via Bayesian optimization [J]. Phys. Rev., 2017, 7X: 021024
|
105 |
Seko A, Maekawa T, Tsuda K, et al. Machine learning with systematic density-functional theory calculations: Application to melting temperatures of single- and binary-component solids [J]. Phys. Rev., 2014, 89B: 054303
|
106 |
Gubaev K, Podryabinkin E V, Hart G L W, et al. Accelerating high-throughput searches for new alloys with active learning of interatomic potentials [J]. Comput. Mater. Sci., 2019, 156: 148
|
107 |
Burger B, Maffettone P M, Gusev V V, et al. A mobile robotic chemist [J]. Nature, 2020, 583: 237
|
108 |
Gongora A E, Xu B W, Perry W, et al. A Bayesian experimental autonomous researcher for mechanical design [J]. Sci. Adv., 2020, 6: eaaz1708
|
109 |
Tian Y, Xue D Z, Yuan R H, et al. Efficient estimation of material property curves and surfaces via active learning [J]. Phys. Rev. Mater., 2021, 5: 013802
|
110 |
Tian Y, Yuan R H, Xue D Z, et al. Determining multi-component phase diagrams with desired characteristics using active learning [J]. Adv. Sci., 2021, 8: 2003165
|
111 |
Terayama K, Tamura R, Nose Y, et al. Efficient construction method for phase diagrams using uncertainty sampling [J]. Phys. Rev. Mater., 2019, 3: 033802
|
112 |
Dai C Y, Glotzer S C. Efficient phase diagram sampling by active learning [J]. J. Phys. Chem., 2020, 124B: 1275
|
113 |
Rickman J M, Chan H M, Harmer M P, et al. Materials informatics for the screening of multi-principal elements and high-entropy alloys [J]. Nat. Commun., 2019, 10: 2618
|
114 |
Cassar D R, Santos G G, Zanotto E D. Designing optical glasses by machine learning coupled with a genetic algorithm [J]. Ceram. Int., 2021, 47: 10555
|
115 |
Reddy N S, Krishnaiah J, Young H B, et al. Design of medium carbon steels by computational intelligence techniques [J]. Comput. Mater. Sci., 2015, 101: 120
|
116 |
Shen C G, Wang C C, Wei X L, et al. Physical metallurgy-guided machine learning and artificial intelligent design of ultrahigh-strength stainless steel [J]. Acta Mater., 2019, 179: 201
|
117 |
Liu P, Huang H Y, Antonov S, et al. Machine learning assisted design of γ′-strengthened Co-base superalloys with multi-performance optimization [J]. npj Comput. Mater., 2020, 6: 62
|
118 |
Yu J X, Wang C L, Chen Y C, et al. Accelerated design of L12-strengthened Co-base superalloys based on machine learning of experimental data [J]. Mater. Des., 2020, 195: 108996
|
119 |
Ashby M F. Multi-objective optimization in material design and selection [J]. Acta Mater., 2000, 48: 359
|
120 |
Yamawaki M, Ohnishi M, Ju S H, et al. Multifunctional structural design of graphene thermoelectrics by Bayesian optimization [J]. Sci. Adv., 2018, 4: eaar4192
|
121 |
Imanaka Y, Anazawa T, Kumasaka F, et al. Optimization of the composition in a composite material for microelectronics application using the Ising model [J]. Sci. Rep., 2021, 11: 3057
|
122 |
Nakamura K, Otani N, Koike T. Multi-objective Bayesian optimization of optical glass compositions [J]. Ceram. Int., 2021, 47: 15819
|
123 |
Zhang H T, Fu H D, Zhu S C, et al. Machine learning assisted composition effective design for precipitation strengthened copper alloys [J]. Acta Mater., 2021, 215: 117118
|
124 |
Chen Y F, Tian Y, Zhou Y M, et al. Machine learning assisted multi-objective optimization for materials processing parameters: A case study in Mg alloy [J]. J. Alloys Compd., 2020, 844: 156159
|
125 |
Menou E, Toda-Caraballo I, Rivera-Díaz-Del-Castillo P E J, et al. Evolutionary design of strong and stable high entropy alloys using multi-objective optimisation based on physical models, statistics and thermodynamics [J]. Mater. Des., 2018, 143: 185
|
126 |
Fang S F, Wang M P, Song M. An approach for the aging pro-cess optimization of AlZnMgCu series alloys [J]. Mater. Des., 2009, 30: 2460
|
127 |
Gopakumar A M, Balachandran P V, Xue D Z, et al. Multi-objective optimization for materials discovery via adaptive design [J]. Sci. Rep., 2018, 8: 3738
|
128 |
Solomou A, Zhao G, Boluki S, et al. Multi-objective Bayesian materials discovery: Application on the discovery of precipitation strengthened NiTi shape memory alloys through micromechanical modeling [J]. Mater. Des., 2018, 160: 810
|
129 |
Zunger A. Inverse design in search of materials with target functionalities [J]. Nat. Rev. Chem., 2018, 2: 0121
|
130 |
Butler K T, Davies D W, Cartwright H, et al. Machine learning for molecular and materials science [J]. Nature, 2018, 559: 547
|
131 |
Sanchez-Lengeling B, Aspuru-Guzik A. Inverse molecular design using machine learning: Generative models for matter engineering [J]. Science, 2018, 361: 360
|
132 |
Badrinarayanan V, Kendall A, Cipolla R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation [J]. IEEE Trans. Pattern Anal. Mach. Intell., 2017, 39: 2481
|
133 |
Cho K, Courville A, Bengio Y. Describing multimedia content using attention-based encoder-decoder networks [J]. IEEE Trans. Multimed., 2015, 17: 1875
|
134 |
Segler M H S, Preuss M, Waller M P. Planning chemical syntheses with deep neural networks and symbolic AI [J]. Nature, 2018, 555: 604
|
135 |
Gómez-Bombarelli R, Wei J N, Duvenaud D, et al. Automatic chemical design using a data-driven continuous representation of molecules [J]. ACS Cent. Sci., 2018, 4: 268
|
136 |
Noh J, Kim J, Stein H S, et al. Inverse design of solid-state materials via a continuous representation [J]. Matter, 2019, 1: 1370
|
137 |
Chun S, Roy S, Nguyen Y T, et al. Deep learning for synthetic microstructure generation in a materials-by-design framework for heterogeneous energetic materials [J]. Sci. Rep., 2020, 10: 13307
|
138 |
Kim B, Lee S, Kim J. Inverse design of porous materials using artificial neural networks [J]. Sci. Adv., 2020, 6: eaax9324
|
139 |
Jiang L, Wang C S, Fu H D, et al. Discovery of aluminum alloys with ultra-strength and high-toughness via a property-oriented design strategy [J]. J. Mater. Sci. Technol., 2022, 98: 33
|
140 |
Wang C S, Fu H D, Jiang L, et al. A property-oriented design strategy for high performance copper alloys via machine learning [J]. npj Comput. Mater., 2019, 5: 87
|
141 |
Olivecrona M, Blaschke T, Engkvist O, et al. Molecular de-novo design through deep reinforcement learning [J]. J. Cheminform., 2017, 9: 48
|
142 |
Popova M, Isayev O, Tropsha A. Deep reinforcement learning for de novo drug design [J]. Sci. Adv., 2018, 4: eaap7885
|
143 |
Al-Assaf Y, Kadi H E. Fatigue life prediction of composite materials using polynomial classifiers and recurrent neural networks [J]. Compos. Struct., 2007, 77: 561
|
144 |
Granda J M, Donina L, Dragone V, et al. Controlling an organic synthesis robot with machine learning to search for new reactivity [J]. Nature, 2018, 559: 377
|
145 |
King R D, Rowland J, Oliver S G, et al. The automation of science [J]. Science, 2009, 324: 85
|
146 |
King R D, Whelan K E, Jones F M, et al. Functional genomic hypothesis generation and experimentation by a robot scientist [J]. Nature, 2004, 427: 247
|
147 |
Liu S L, Su Y J, Yin H Q, et al. An infrastructure with user-centered presentation data model for integrated management of materials data and services [J]. npj Comput. Mater, 2021, 7: 88
|
148 |
Olivetti E A, Cole J M, Kim E, et al. Data-driven materials research enabled by natural language processing and information extraction [J]. Appl. Phys. Rev., 2020, 7: 041317
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|