Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (11): 1343-1361    DOI: 10.11900/0412.1961.2021.00357
Overview Current Issue | Archive | Adv Search |
Machine Learning for Materials Research and Development
XIE Jianxin1(), SU Yanjing1(), XUE Dezhen2, JIANG Xue1, FU Huadong1, HUANG Haiyou1
1.Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2.State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
Cite this article: 

XIE Jianxin, SU Yanjing, XUE Dezhen, JIANG Xue, FU Huadong, HUANG Haiyou. Machine Learning for Materials Research and Development. Acta Metall Sin, 2021, 57(11): 1343-1361.

Download:  HTML  PDF(3475KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The rapid advancement of big data and artificial intelligence has resulted in new data-driven materials research and development (R&D), which has achieved substantial progress. This fourth paradigm is believed to improve materials design efficiency and industrialized application and stimulate the discovery of new materials. The focus of this work is on the emerging field of machine learning-assisted material R&D, with an emphasis on machine learning predictions and optimization design. Following a brief description of feature construction and selection, recent developments in material predictions on phases/structures, processing-structure-property relationships, microstructure, and material performance are reviewed. This paper also summarizes the research progress on optimization algorithms with machine learning models, which is expected to overcome the bottlenecks such as the small size and high noise level of material data samples and huge space for exploration. The challenges and future opportunities for machine learning applications in materials R&D are discussed and prospected.

Key words:  materials data      data mining      machine learning      material design      material genome engineering     
Received:  25 August 2021     
ZTFLH:  TP181  
About author:  SU Yanjing, professor, Tel: (010)62333884, E-mail: yjsu@ustb.edu.cn
XIE Jianxin, professor, Tel: (010)62332254, E-mail: jxxie@mater.ustb.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00357     OR     https://www.ams.org.cn/EN/Y2021/V57/I11/1343

Fig.1  Schematic workflow of phase prediction via high-throughput experiments and machine learning of Ni-base superalloys[19] (TCP—topologically close-packed, GCP—geometric close-packed)
Fig.2  Flow map for the design of microstructure and mechanical property of steels with artificial neural network (ANN) (PF—polygonal ferrite; AF—acicular ferrite; GB—granular bainite; BF—bainitic ferrite; M—martensite; BH, DP, CP, and TRIP represent bake-hardening steel, dual phase steel, complex phase steel, and transformation induced plasticity steel; HSLA—high strength low alloys; L.R.Y.S represents linear regression of yield strength)[45]
Fig.3  Property optimization workflow of TRIP Ti alloys based on artificial neural network (UTS—ultimate tensile strength, El—elongation, HT—heat treatment) (a, b)[60]
Fig.4  Identification of tree structure (a) and regression models (b) via interpretable machine learning (Xi—the material parameter, GGG—gadolinium gallium garnet (Gd3Ga5O12) crystals, SSTE—the spin-driven thermopower)[78]
Fig.5  The Solid solution strengthening prediction via different physical models (MRE—the mean relative error, R—correlation coefficient, DFT—density functional theory)[80]
Fig.6  Strategy of combining machine learning and genetic algorithm to design ultrahigh-strength stainless steel (PM—physical metallurgy, MAE—mean absolute error, SVM—support vector machine, SVC—support vector classifier, GA—genetic algorithm, VF—equilibrium volume fraction, DF—driving force)[116]
Fig.7  Sequential filter strategy for multi-objective optimization of Co-base superalloys[117]
Fig.8  Design strategy of precipitation strengthened copper alloys based on alloy factor screening and Bayesian optimization (MOEI represents the simultaneous improvement of mechanical and electrical properties based on the benchmark property μ*, since EIHV and EIEC, respectively represent the property improvement (hardness, electrical conductivity) based on the benchmark properties μHV* and μEC*)[123]
Fig.9  Transformation of multi-objective into single-objective optimization methods (θp—the angle between the target vector (ωt) and the Pareto front vector (ωp), δ j—the distance from a point in the virtual space to the target)[124]
Fig.10  Pareto front optimization diagram
Fig.11  Multi-objective Bayesian optimization framework (SMA—shape memory alloy, EHVI—expected hyper-volume improvement)[128]
Fig.12  The materials reverse design process by encoding and decoding (SMILES—simplified molecular-input line-entry system)[135]
Fig.13  Flowchart of the machine learning design system (MLDS) (a) and the performance of Cu alloys (b) (P2C—property to composition, C2P—composition to property)[140]
1 Agrawal A, Choudhary A. Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science [J]. APL Mater., 2016, 4: 053208
2 Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China [J]. Acta Metall. Sin., 2020, 56: 1313
宿彦京, 付华栋, 白 洋等. 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
3 Hart G L W, Mueller T, Toher C, et al. Machine learning for alloys [J]. Nat. Rev. Mater., 2021, 6: 730
4 Lookman T, Balachandran P V, Xue D Z, et al. Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design [J]. npj Comput. Mater., 2019, 5: 21
5 Schmidt J, Marques M R G, Botti S, et al. Recent advances and applications of machine learning in solid-state materials science [J]. npj Comput. Mater., 2019, 5: 83
6 Liu Y L, Niu C, Wang Z, et al. Machine learning in materials genome initiative: A review [J]. J. Mater. Sci. Technol., 2020, 57: 113
7 Chen C, Zuo Y X, Ye W K, et al. A critical review of machine learn-ing of energy materials [J]. Adv. Energy Mater., 2020, 10: 1903242
8 Ramprasad R, Batra R, Pilania G, et al. Machine learning in materials informatics: Recent applications and prospects [J]. npj Comput. Mater., 2017, 3: 54
9 Batra R, Song L, Ramprasad R. Emerging materials intelligence ecosystems propelled by machine learning [J]. Nat. Rev. Mater., 2021, 6: 655
10 Rickman J M, Lookman T, Kalinin S V. Materials informatics: From the atomic-level to the continuum [J]. Acta Mater., 2019, 168: 473
11 Ward L, Aykol M, Blaiszik B, et al. Strategies for accelerating the adoption of materials informatics [J]. MRS Bull., 2018, 43: 683
12 Song Z L, Chen X W, Meng F B, et al. Machine learning in materials design: Algorithm and application [J]. Chin. Phys., 2020, 29 B: 116103
13 Zhang H T, Fu H D, He X Q, et al. Dramatically enhanced combina-tion of ultimate tensile strength and electric conductivity of alloys via machine learning screening [J]. Acta Mater., 2020, 200: 803
14 Pattanayak S, Dey S, Chatterjee S, et al. Computational intelligence based designing of microalloyed pipeline steel [J]. Comput. Mater. Sci., 2015, 104: 60
15 Weng B C, Song Z L, Zhu R L, et al. Simple descriptor derived from symbolic regression accelerating the discovery of new perovskite catalysts [J]. Nat. Commun., 2020, 11: 3513
16 Wang X X, Wang C X, Ci S N, et al. Accelerating 2D MXene catalyst discovery for the hydrogen evolution reaction by computer-driven workflow and an ensemble learning strategy [J]. J. Mater. Chem., 2020, 8A: 23488
17 Oliynyk A O, Antono E, Sparks T D, et al. High-throughput machine-learning-driven synthesis of Full-Heusler compounds [J]. Chem. Mater., 2016, 28: 7324
18 Pilania G, Mannodi-Kanakkithodi A, Uberuaga B P, et al. Machine learning bandgaps of double perovskites [J]. Sci. Rep., 2016, 6: 19375
19 Qin Z J, Wang Z, Wang Y Q, et al. Phase prediction of Ni-base superalloys via high-throughput experiments and machine learning [J]. Mater. Res. Lett., 2021, 9: 32
20 Zou M, Li W D, Li L F, et al. Machine learning assisted design approach for developing γ′-strengthened Co-Ni-base superalloys [A]. Superalloys2020 [M]. Cham: Springer, 2020: 937
21 Yu J X, Guo S, Chen Y C, et al. A two-stage predicting model for γ′ solvus temperature of L12-strengthened Co-base superalloys based on machine learning [J]. Intermetallics, 2019, 110: 106466
22 Li Y, Guo W L. Machine-learning model for predicting phase forma-tions of high-entropy alloys [J]. Phys. Rev. Mater., 2019, 3: 095005
23 Zhou Z Q, Zhou Y J, He Q F, et al. Machine learning guided appraisal and exploration of phase design for high entropy alloys [J]. npj Comput. Mater., 2019, 5: 128
24 Kaufmann K, Vecchio K S. Searching for high entropy alloys: A machine learning approach [J]. Acta Mater., 2020, 198: 178
25 Lee S Y, Byeon S, Kim H S, et al. Deep learning-based phase prediction of high-entropy alloys: Optimization, generation, and explanation [J]. Mater. Des., 2021, 197: 109260
26 Risal S, Zhu W H, Guillen P, et al. Improving phase prediction accuracy for high entropy alloys with machine learning [J]. Comput. Mater. Sci., 2021, 192: 110389
27 Roy A, Balasubramanian G. Predictive descriptors in machine learning and data-enabled explorations of high-entropy alloys [J]. Comput. Mater. Sci., 2021, 193: 110381
28 Krishna Y V, Jaiswal U K, Rahul M R. Machine learning approach to predict new multiphase high entropy alloys [J]. Scr. Mater., 2021, 197: 113804
29 Jaiswal U K, Krishna Y V, Rahul M R, et al. Machine learning-enabled identification of new medium to high entropy alloys with solid solution phases [J]. Comput. Mater. Sci., 2021, 197: 110623
30 Yan Y G, Lu D, Wang K. Accelerated discovery of single-phase refractory high entropy alloys assisted by machine learning [J]. Comput. Mater. Sci., 2021, 199: 110723
31 Huang W J, Martin P, Zhuang H L. Machine-learning phase prediction of high-entropy alloys [J]. Acta Mater., 2019, 169: 225
32 Zhang Y, Wen C, Wang C X, et al. Phase prediction in high entropy alloys with a rational selection of materials descriptors and machine learning models [J]. Acta Mater., 2020, 185: 528
33 Xiong J, Zhang T Y, Shi S Q. Machine learning prediction of elastic properties and glass-forming ability of bulk metallic glasses [J]. MRS Commun., 2019, 9: 576
34 Xiong J, Shi S Q, Zhang T Y. Machine learning prediction of glass-forming ability in bulk metallic glasses [J]. Comput. Mater. Sci., 2021, 192: 110362
35 Xiong J, Shi S Q, Zhang T Y. A machine-learning approach to predicting and understanding the properties of amorphous metallic alloys [J]. Mater. Des., 2020, 187: 108378
36 Ward L, O'Keeffe S C, Stevick J, et al. A machine learning approach for engineering bulk metallic glass alloys [J]. Acta Mater., 2018, 159: 102
37 Tripathi M K, Chattopadhyay P P, Ganguly S. Multivariate analysis and classification of bulk metallic glasses using principal component analysis [J]. Comput. Mater. Sci., 2015, 107: 79
38 Sun Y T, Bai H Y, Li M Z, et al. Machine learning approach for prediction and understanding of glass-forming ability [J]. J. Phys. Chem. Lett., 2017, 8: 3434
39 Laws K J, Miracle D B, Ferry M. A predictive structural model for bulk metallic glasses [J]. Nat. Commun., 2015, 6: 8123
40 Cai A H, Xiong X, Liu Y, et al. Artificial neural network modeling for undercooled liquid region of glass forming alloys [J]. Comput. Mater. Sci., 2010, 48: 109
41 Ren F, Ward L, Williams T, et al. Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments [J]. Sci. Adv., 2018, 4: eaaq1566
42 Li Y P, Liu Y Y, Luo S H, et al. Neural network model for correlating microstructural features and hardness properties of nickel-based superalloys [J]. J. Mater. Res. Technol., 2020, 9: 14467
43 Fu C, Chen Y D, Li L F, et al. Evaluation of service conditions of high pressure turbine blades made of DS Ni-base superalloy by artificial neural networks [J]. Mater. Today Commun., 2020, 22: 100838
44 Jiang X, Yin H Q, Zhang C, et al. An materials informatics approach to Ni-based single crystal superalloys lattice misfit prediction [J]. Comput. Mater. Sci., 2018, 143: 295
45 Jung I D, Shin D S, Kim D, et al. Artificial intelligence for the prediction of tensile properties by using microstructural parameters in high strength steels [J]. Materialia, 2020, 11: 100699
46 Gebhardt C, Trimborn T, Weber F, et al. Simplified ResNet approach for data driven prediction of microstructure-fatigue relationship [J]. Mech. Mater., 2020, 151: 103625
47 Herriott C, Spear A D. Predicting microstructure-dependent mechanical properties in additively manufactured metals with machine- and deep-learning methods [J]. Comput. Mater. Sci., 2020, 175: 109599
48 Kondo R, Yamakawa S, Masuoka Y, et al. Microstructure recognition using convolutional neural networks for prediction of ionic conductivity in ceramics [J]. Acta Mater., 2017, 141: 29
49 Wang C C, Shen C G, Cui Q, et al. Tensile property prediction by feature engineering guided machine learning in reduced activation ferritic/martensitic steels [J]. J. Nucl. Mater., 2020, 529: 151823
50 Guo S, Yu J X, Liu X J, et al. A predicting model for properties of steel using the industrial big data based on machine learning [J]. Comput. Mater. Sci., 2019, 160: 95
51 Ozerdem M S, Kolukisa S. Artificial neural network approach to predict mechanical properties of hot rolled, nonresulfurized, AISI 10xx series carbon steel bars [J]. J. Mater. Process. Technol., 2008, 199: 437
52 Guo Z L, Sha W D. Modelling the correlation between processing parameters and properties of maraging steels using artificial neural network [J]. Comput. Mater. Sci., 2004, 29: 12
53 Li X Y, Roth C C, Mohr D. Machine-learning based temperature- and rate-dependent plasticity model: Application to analysis of fracture experiments on DP steel [J]. Int. J. Plast., 2019, 118: 320
54 Xu X N, Wang L Y, Zhu G M, et al. Predicting tensile properties of AZ31 magnesium alloys by machine learning [J]. JOM, 2020, 72: 3935
55 Liu B, Tang A T, Pan F S, et al. Mechanical property prediction model of AZ31 magnesium alloys based on an artificial neural network with parameter optimization [J]. J. Chongqing Univ., 2011, 34(3): 44
刘 彬, 汤爱涛, 潘复生等. 基于参数优化的人工神经网络的AZ31镁合金力学性能预测模型 [J]. 重庆大学学报, 2011, 34(3): 44
56 Li N, Zhao S Y, Zhang Z G. Property prediction of medical magnesium alloy based on machine learning [A]. Proceedings of the 2021 IEEE 6th International Conference on Big Data Analytics (ICBDA) [C]. Xiamen, IEEE, 2021: 51
57 Chaudry U M, Hamad K, Abuhmed T. Machine learning-aided design of aluminum alloys with high performance [J]. Mater. Today Commun., 2021, 26: 101897
58 Cao X Y, Zhang Y B, Chen H. Predicting mechanical properties and corrosion resistance of heat-treated 7N01 aluminum alloy by machine learning methods [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2020, 774: 012030
59 Malinov S, Sha W, Mckeown J J. Modelling the correlation between processing parameters and properties in titanium alloys using artificial neural network [J]. Comput. Mater. Sci., 2001, 21: 375
60 Oh J M, Narayana P L, Hong J K, et al. Property optimization of TRIP Ti alloys based on artificial neural network [J]. J. Alloys Compd., 2021, 884: 161029
61 Yang F, Li Z, Wang Q, et al. Cluster-formula-embedded machine learning for design of multicomponent β-Ti alloys with low Young's modulus [J]. npj Comput. Mater., 2020, 6: 101
62 Wu C T, Chang H T, Wu C Y, et al. Machine learning recommends affordable new Ti alloy with bone-like modulus [J]. Mater. Today, 2020, 34: 41
63 Xia X, Nie J F, Davies C H J, et al. An artificial neural network for predicting corrosion rate and hardness of magnesium alloys [J]. Mater. Des., 2016, 90: 1034
64 Wen Y F, Cai C Z, Liu X H, et al. Corrosion rate prediction of 3C steel under different seawater environment by using support vector regression [J]. Corros. Sci., 2009, 51: 349
65 Fang S F, Wang M P, Qi W H, et al. Hybrid genetic algorithms and support vector regression in forecasting atmospheric corrosion of metallic materials [J]. Comput. Mater. Sci., 2008, 44: 647
66 Cavanaugh M K, Buchheit R G, Birbilis N. Modeling the environmental dependence of pit growth using neural network approaches [J]. Corros. Sci., 2010, 52: 3070
67 Diao Y P, Yan L C, Gao K W. Improvement of the machine learning-based corrosion rate prediction model through the optimization of input features [J]. Mater. Des., 2021, 198: 109326
68 Shi J B, Wang J H, Macdonald D D. Prediction of primary water stress corrosion crack growth rates in Alloy 600 using artificial neural networks [J]. Corros. Sci., 2015, 92: 217
69 Agrawal A, Deshpande P D, Cecen A, et al. Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters [J]. Integr. Mater. Manuf. Innov., 2014, 3: 90
70 Kamble R G, Raykar N R, Jadhav D N. Machine learning approach to predict fatigue crack growth [J]. Mater. Today: Proc., 2021, 38: 2506
71 He L, Wang Z L, Akebono H, et al. Machine learning-based predictions of fatigue life and fatigue limit for steels [J]. J. Mater. Sci. Technol., 2021, 90: 9
72 Liu Y, Wu J M, Wang Z C, et al. Predicting creep rupture life of Ni-based single crystal superalloys using divide-and-conquer approach based machine learning [J]. Acta Mater., 2020, 195: 454
73 Shin D, Yamamoto Y, Brady M P, et al. Modern data analytics approach to predict creep of high-temperature alloys [J]. Acta Mater., 2019, 168: 321
74 Hu X B, Wang J C, Wang Y Y, et al. Two-way design of alloys for advanced ultra supercritical plants based on machine learning [J]. Comput. Mater. Sci., 2018, 155: 331
75 Kong C S, Luo W, Arapan S, et al. Information-theoretic approach for the discovery of design rules for crystal chemistry [J]. J. Chem. Inf. Model., 2012, 52: 1812
76 Xue D Z, Xue D Q, Yuan R H, et al. An informatics approach to transformation temperatures of NiTi-based shape memory alloys [J]. Acta Mater., 2017, 125: 532
77 Raccuglia P, Elbert K C, Adler P D F, et al. Machine-learning-assisted materials discovery using failed experiments [J]. Nature, 2016, 533: 73
78 Iwasaki Y, Sawada R, Stanev V, et al. Identification of advanced spin-driven thermoelectric materials via interpretable machine learning [J]. npj Comput. Mater., 2019, 5: 103
79 Wu Q F, Wang Z J, Hu X B, et al. Uncovering the eutectics design by machine learning in the Al-Co-Cr-Fe-Ni high entropy system [J]. Acta Mater., 2020, 182: 278
80 Wen C, Wang C X, Zhang Y, et al. Modeling solid solution strengthening in high entropy alloys using machine learning [J]. Acta Mater., 2021, 212: 116917
81 Si S P, Fan B J, Liu X W, et al. Study on strengthening effects of Zr-Ti-Nb-O alloys via high throughput powder metallurgy and data-driven machine learning [J]. Mater. Des., 2021, 206: 109777
82 Xie Q, Suvarna M, Li J L, et al. Online prediction of mechanical properties of hot rolled steel plate using machine learning [J]. Mater. Des., 2021, 197: 109201
83 Loftis C, Yuan K P, Zhao Y, et al. Lattice thermal conductivity prediction using symbolic regression and machine learning [J]. J. Phys. Chem., 2021, 125A: 435
84 Yuan F L, Mueller T. Identifying models of dielectric breakdown strength from high-throughput data via genetic programming [J]. Sci. Rep., 2017, 7: 17594
85 Wei Q H, Xiong J, Sun S, et al. Multi-objective machine learning of four mechanical properties of steels [J]. Sci. Sin. Technol., 2021, 51: 722
魏清华, 熊 杰, 孙 升等. 多目标机器学习钢的四种力学性能 [J]. 中国科学: 技术科学, 2021, 51: 722
86 Jones D R, Schonlau M, Welch W J. Efficient global optimization of expensive black-box functions [J]. J. Glob. Optim., 1998, 13: 455
87 de Jong M, Chen W, Notestine R, et al. A statistical learning framework for materials science: application to elastic moduli of k-nary inorganic polycrystalline compounds [J]. Sci. Rep., 2016, 6: 34256
88 Frazier P I. A tutorial on Bayesian optimization [J]. arXiv: 1807.02811, 2018
89 Xue D Z, Balachandran P V, Hogden J, et al. Accelerated search for materials with targeted properties by adaptive design [J]. Nat. Commun., 2016, 7: 11241
90 Wen C, Zhang Y, Wang C X, et al. Machine learning assisted design of high entropy alloys with desired property [J]. Acta Mater., 2019, 170: 109
91 Li J H, Zhang Y B, Cao X Y, et al. Accelerated discovery of high-strength aluminum alloys by machine learning [J]. Commun. Mater., 2020, 1: 73
92 Liu Y W, Wang L Y, Zhang H, et al. Accelerated development of high-strength magnesium alloys by machine learning [J]. Metall. Mater. Trans., 2021, 52A: 943
93 Zhao W C, Zheng C, Xiao B, et al. Composition refinement of 6061 aluminum alloy using active machine learning model based on bayesian optimization sampling [J]. Acta Metall. Sin., 2021, 57: 797
赵婉辰, 郑 晨, 肖 斌等. 基于Bayesian采样主动机器学习模型的6061铝合金成分精细优化 [J]. 金属学报, 2021, 57: 797
94 Xue D Z, Balachandran P V, Yuan R H, et al. Accelerated search for BaTiO3-based piezoelectrics with vertical morphotropic phase boundary using Bayesian learning [J]. Proc. Natl. Acad. Sci. USA, 2016, 113: 13301
95 Yuan R H, Liu Z, Balachandran P V, et al. Accelerated discovery of large electrostrains in BaTiO3-based piezoelectrics using active learnIng [J]. Adv. Mater., 2018, 30: 1702884
96 Yuan R H, Tian Y, Xue D Z, et al. Accelerated search for BaTiO3-based ceramics with large energy storage at low fields using machine learning and experimental design [J]. Adv. Sci., 2019, 6: 1901395
97 Verduzco J C, Marinero E E, Strachan A. An active learning approach for the design of doped LLZO ceramic garnets for battery applications [J]. Integr. Mater. Manuf. Innov., 2021, 10: 299
98 Nugraha A S, Lambard G, Na J, et al. Mesoporous trimetallic PtPdAu alloy films toward enhanced electrocatalytic activity in methanol oxidation: Unexpected chemical compositions discovered by Bayesian optimization [J]. J. Mater. Chem., 2020, 8A: 13532
99 Langner S, Häse F, Perea J D, et al. Beyond ternary OPV: High-throughput experimentation and self-driving laboratories optimize multicomponent systems [J]. Adv. Mater., 2020, 32: 1907801
100 Miyagawa S, Gotoh K, Kutsukake K, et al. Application of Bayesian optimization for improved passivation performance in TiOx/SiOy/c-Si heterostructure by hydrogen plasma treatment [J]. Appl. Phys. Express, 2021, 14: 025503
101 Haghanifar S, McCourt M, Cheng B L, et al. Creating glasswing butterfly-inspired durable antifogging superomniphobic supertransmissive, superclear nanostructured glass through Bayesian learning and optimization [J]. Mater. Horiz., 2019, 6: 1632
102 Attia P M, Grover A, Jin N, et al. Closed-loop optimization of fast-charging protocols for batteries with machine learning [J]. Nature, 2020, 578: 397
103 Wang X K, Rai N, Pereira B M P, et al. Accelerated knowledge discovery from omics data by optimal experimental design [J]. Nat. Commun., 2020, 11: 611
104 Ju S H, Shiga T, Feng L, et al. Designing nanostructures for phonon transport via Bayesian optimization [J]. Phys. Rev., 2017, 7X: 021024
105 Seko A, Maekawa T, Tsuda K, et al. Machine learning with systematic density-functional theory calculations: Application to melting temperatures of single- and binary-component solids [J]. Phys. Rev., 2014, 89B: 054303
106 Gubaev K, Podryabinkin E V, Hart G L W, et al. Accelerating high-throughput searches for new alloys with active learning of interatomic potentials [J]. Comput. Mater. Sci., 2019, 156: 148
107 Burger B, Maffettone P M, Gusev V V, et al. A mobile robotic chemist [J]. Nature, 2020, 583: 237
108 Gongora A E, Xu B W, Perry W, et al. A Bayesian experimental autonomous researcher for mechanical design [J]. Sci. Adv., 2020, 6: eaaz1708
109 Tian Y, Xue D Z, Yuan R H, et al. Efficient estimation of material property curves and surfaces via active learning [J]. Phys. Rev. Mater., 2021, 5: 013802
110 Tian Y, Yuan R H, Xue D Z, et al. Determining multi-component phase diagrams with desired characteristics using active learning [J]. Adv. Sci., 2021, 8: 2003165
111 Terayama K, Tamura R, Nose Y, et al. Efficient construction method for phase diagrams using uncertainty sampling [J]. Phys. Rev. Mater., 2019, 3: 033802
112 Dai C Y, Glotzer S C. Efficient phase diagram sampling by active learning [J]. J. Phys. Chem., 2020, 124B: 1275
113 Rickman J M, Chan H M, Harmer M P, et al. Materials informatics for the screening of multi-principal elements and high-entropy alloys [J]. Nat. Commun., 2019, 10: 2618
114 Cassar D R, Santos G G, Zanotto E D. Designing optical glasses by machine learning coupled with a genetic algorithm [J]. Ceram. Int., 2021, 47: 10555
115 Reddy N S, Krishnaiah J, Young H B, et al. Design of medium carbon steels by computational intelligence techniques [J]. Comput. Mater. Sci., 2015, 101: 120
116 Shen C G, Wang C C, Wei X L, et al. Physical metallurgy-guided machine learning and artificial intelligent design of ultrahigh-strength stainless steel [J]. Acta Mater., 2019, 179: 201
117 Liu P, Huang H Y, Antonov S, et al. Machine learning assisted design of γ′-strengthened Co-base superalloys with multi-performance optimization [J]. npj Comput. Mater., 2020, 6: 62
118 Yu J X, Wang C L, Chen Y C, et al. Accelerated design of L12-strengthened Co-base superalloys based on machine learning of experimental data [J]. Mater. Des., 2020, 195: 108996
119 Ashby M F. Multi-objective optimization in material design and selection [J]. Acta Mater., 2000, 48: 359
120 Yamawaki M, Ohnishi M, Ju S H, et al. Multifunctional structural design of graphene thermoelectrics by Bayesian optimization [J]. Sci. Adv., 2018, 4: eaar4192
121 Imanaka Y, Anazawa T, Kumasaka F, et al. Optimization of the composition in a composite material for microelectronics application using the Ising model [J]. Sci. Rep., 2021, 11: 3057
122 Nakamura K, Otani N, Koike T. Multi-objective Bayesian optimization of optical glass compositions [J]. Ceram. Int., 2021, 47: 15819
123 Zhang H T, Fu H D, Zhu S C, et al. Machine learning assisted composition effective design for precipitation strengthened copper alloys [J]. Acta Mater., 2021, 215: 117118
124 Chen Y F, Tian Y, Zhou Y M, et al. Machine learning assisted multi-objective optimization for materials processing parameters: A case study in Mg alloy [J]. J. Alloys Compd., 2020, 844: 156159
125 Menou E, Toda-Caraballo I, Rivera-Díaz-Del-Castillo P E J, et al. Evolutionary design of strong and stable high entropy alloys using multi-objective optimisation based on physical models, statistics and thermodynamics [J]. Mater. Des., 2018, 143: 185
126 Fang S F, Wang M P, Song M. An approach for the aging pro-cess optimization of AlZnMgCu series alloys [J]. Mater. Des., 2009, 30: 2460
127 Gopakumar A M, Balachandran P V, Xue D Z, et al. Multi-objective optimization for materials discovery via adaptive design [J]. Sci. Rep., 2018, 8: 3738
128 Solomou A, Zhao G, Boluki S, et al. Multi-objective Bayesian materials discovery: Application on the discovery of precipitation strengthened NiTi shape memory alloys through micromechanical modeling [J]. Mater. Des., 2018, 160: 810
129 Zunger A. Inverse design in search of materials with target functionalities [J]. Nat. Rev. Chem., 2018, 2: 0121
130 Butler K T, Davies D W, Cartwright H, et al. Machine learning for molecular and materials science [J]. Nature, 2018, 559: 547
131 Sanchez-Lengeling B, Aspuru-Guzik A. Inverse molecular design using machine learning: Generative models for matter engineering [J]. Science, 2018, 361: 360
132 Badrinarayanan V, Kendall A, Cipolla R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation [J]. IEEE Trans. Pattern Anal. Mach. Intell., 2017, 39: 2481
133 Cho K, Courville A, Bengio Y. Describing multimedia content using attention-based encoder-decoder networks [J]. IEEE Trans. Multimed., 2015, 17: 1875
134 Segler M H S, Preuss M, Waller M P. Planning chemical syntheses with deep neural networks and symbolic AI [J]. Nature, 2018, 555: 604
135 Gómez-Bombarelli R, Wei J N, Duvenaud D, et al. Automatic chemical design using a data-driven continuous representation of molecules [J]. ACS Cent. Sci., 2018, 4: 268
136 Noh J, Kim J, Stein H S, et al. Inverse design of solid-state materials via a continuous representation [J]. Matter, 2019, 1: 1370
137 Chun S, Roy S, Nguyen Y T, et al. Deep learning for synthetic microstructure generation in a materials-by-design framework for heterogeneous energetic materials [J]. Sci. Rep., 2020, 10: 13307
138 Kim B, Lee S, Kim J. Inverse design of porous materials using artificial neural networks [J]. Sci. Adv., 2020, 6: eaax9324
139 Jiang L, Wang C S, Fu H D, et al. Discovery of aluminum alloys with ultra-strength and high-toughness via a property-oriented design strategy [J]. J. Mater. Sci. Technol., 2022, 98: 33
140 Wang C S, Fu H D, Jiang L, et al. A property-oriented design strategy for high performance copper alloys via machine learning [J]. npj Comput. Mater., 2019, 5: 87
141 Olivecrona M, Blaschke T, Engkvist O, et al. Molecular de-novo design through deep reinforcement learning [J]. J. Cheminform., 2017, 9: 48
142 Popova M, Isayev O, Tropsha A. Deep reinforcement learning for de novo drug design [J]. Sci. Adv., 2018, 4: eaap7885
143 Al-Assaf Y, Kadi H E. Fatigue life prediction of composite materials using polynomial classifiers and recurrent neural networks [J]. Compos. Struct., 2007, 77: 561
144 Granda J M, Donina L, Dragone V, et al. Controlling an organic synthesis robot with machine learning to search for new reactivity [J]. Nature, 2018, 559: 377
145 King R D, Rowland J, Oliver S G, et al. The automation of science [J]. Science, 2009, 324: 85
146 King R D, Whelan K E, Jones F M, et al. Functional genomic hypothesis generation and experimentation by a robot scientist [J]. Nature, 2004, 427: 247
147 Liu S L, Su Y J, Yin H Q, et al. An infrastructure with user-centered presentation data model for integrated management of materials data and services [J]. npj Comput. Mater, 2021, 7: 88
148 Olivetti E A, Cole J M, Kim E, et al. Data-driven materials research enabled by natural language processing and information extraction [J]. Appl. Phys. Rev., 2020, 7: 041317
[1] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[2] JI Xiumei, HOU Meiling, WANG Long, LIU Jie, GAO Kewei. Modeling and Application of Deformation Resistance Model for Medium and Heavy Plate Based on Machine Learning[J]. 金属学报, 2023, 59(3): 435-446.
[3] YANG Lei, ZHAO Fan, JIANG Lei, XIE Jianxin. Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning[J]. 金属学报, 2023, 59(11): 1499-1512.
[4] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[5] SONG Bo, ZHANG Jinliang, ZHANG Yuanjie, HU Kai, FANG Ruxuan, JIANG Xin, ZHANG Xinru, WU Zusheng, SHI Yusheng. Research Progress of Materials Design for Metal Laser Additive Manufacturing[J]. 金属学报, 2023, 59(1): 1-15.
[6] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[7] HE Xingqun, FU Huadong, ZHANG Hongtao, FANG Jiheng, XIE Ming, XIE Jianxin. Machine Learning Aided Rapid Discovery of High Perfor-mance Silver Alloy Electrical Contact Materials[J]. 金属学报, 2022, 58(6): 816-826.
[8] WANG Guanjie, LI Kaiqi, PENG Liyu, ZHANG Yiming, ZHOU Jian, SUN Zhimei. High-Throughput Automatic Integrated Material Calculations and Data Management Intelligent Platform and the Application in Novel Alloys[J]. 金属学报, 2022, 58(1): 75-88.
[9] ZHAO Wanchen, ZHENG Chen, XIAO Bin, LIU Xing, LIU Lu, YU Tongxin, LIU Yanjie, DONG Ziqiang, LIU Yi, ZHOU Ce, WU Hongsheng, LU Baokun. Composition Refinement of 6061 Aluminum Alloy Using Active Machine Learning Model Based on Bayesian Optimization Sampling[J]. 金属学报, 2021, 57(6): 797-810.
[10] XU Wei,HUANG Minghao,WANG Jinliang,SHEN Chunguang,ZHANG Tianyu,WANG Chenchong. Review: Relations Between Metastable Austenite and Fatigue Behavior of Steels[J]. 金属学报, 2020, 56(4): 459-475.
[11] LIU Rendong SHI Wen HE Yanlin LI Lin WANG Fu. DESIGN AND INVESTIGATION ON THE HOT ROLLING TWIP STEEL WITH TRIP EFFECT[J]. 金属学报, 2012, 48(1): 122-128.
No Suggested Reading articles found!