Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (7): 960-968    DOI: 10.11900/0412.1961.2019.00403
Current Issue | Archive | Adv Search |
Effect of Al and Ni on Hot Deformation Behavior of 1Cr9Al(1~3)Ni(1~7)WVNbB Steel
ZHAO Manman1, QIN Sen1, FENG Jie1, DAI Yongjuan1, GUO Dong1,2()
1. College of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China
2. College of Mechanical Engineering, Tianjin Vocational and Technical Normal University, Tianjin 300222, China
Cite this article: 

ZHAO Manman, QIN Sen, FENG Jie, DAI Yongjuan, GUO Dong. Effect of Al and Ni on Hot Deformation Behavior of 1Cr9Al(1~3)Ni(1~7)WVNbB Steel. Acta Metall Sin, 2020, 56(7): 960-968.

Download:  HTML  PDF(2926KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The addition of Al and Ni to ferritic heat resistant steel can improve its high temperature strength and high temperature oxidation resistance. Al and Ni in steel have some effects on the thermal deformation behavior of steel. But there is less research on it. In this work, a new type of 1Cr9Al(1~3)Ni(1~ 7)WVNbB high aluminum ferrite heat-resistant steel was prepared by adding Al element to T92 steel and adjusting Ni content properly. Gleeble-3800 thermal simulation test machine was used to conduct isothermal and constant speed thermal compression experiment with 60% deformation at 950~1150 ℃ and 0.1~10 s-1 strain rates, respectively. The effects of Al and Ni additions on the hot deformation behavior, peak stress and activation energy of hot deformation of the steel were studied. The rheological stress expression containing Zener-Hollomon parameters were obtained by fitting, and the constitutive equation of the test steel was established. The results show that the addition of Al and the increase of Al content significantly reduces rheological stress and peak stress under thermal compression, which greatly reduces the difficulty of test steel processing. Compared with T92 steel, the thermal deformation activation energies of four sample groups increase by 38.136%, 19.188%, 28.003%, and 11.915%, respectively. The peak stress calculated by the constitutive equation is in good agreement with the experimental data. The results show that the constitutive equation has high accuracy. The relationship between peak flow stress, deformation temperature and strain rate can be expressed well.

Key words:  high alumina ferritic heat resistant steel      thermal compression deformation      rheological stress      thermal deformation constitutive equation     
Received:  25 November 2019     
ZTFLH:  TG142.33  
Fund: National Natural Science Foundation of China(51774108);National Natural Science Foundation of China(51874116)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00403     OR     https://www.ams.org.cn/EN/Y2020/V56/I7/960

Alloy No.CNSiMnCrMoNiAlNbVWBPSFe
T92[9]0.07~0.130.03~0.07≤0.500.30~0.608.50~9.500.30~0.60≤0.4000.040~0.0900.150~0.250~1.50~2.000.001~0.006≤0.020≤0.010Bal.
10.100.050.300.509.000.303.81.00.060.201.500.0030.0010.001Bal.
20.100.050.300.509.000.301.41.00.060.201.500.0030.0010.001Bal.
30.100.050.300.509.000.307.33.00.060.201.500.0030.0010.001Bal.
40.100.050.300.509.000.303.93.00.060.201.500.0030.0010.001Bal.
Table 1  Chemical compositions of T92 steel[9] and 1Cr9Al(1~3)Ni(1~7)WVNbB steel
Fig.1  Schematic of isothermal compression test (ε˙—strain rate; T—deformation temperature; ε—engineering strain)
Fig.2  True stress-ture strain curves of alloy steel under ideal conditions (σp—peak flow stress; εp—strain under peak stress; I—work hardening stage; Ⅱ—dynamic recovery stage; Ⅲ—the dynamic recrystallization stage; Ⅳ—stable stage)
Fig.3  True stress-true strain curves of 1Cr9Al(1~3)Ni(1~7)WVNbB steel and T92 steel[9] at 950 ℃ (a) and 1150 ℃ (b) with strain rate of 1 s-1
Fig.4  True stress-true strain curves of sample No.4 at strain rates of 0.1 s-1 (a), 1 s-1 (b), 10 s-1 (c) and 950 ℃ (d), 1000 ℃ (e), 1050 ℃ (f), 1100 ℃ (g), 1150 ℃ (h)
Fig.5  Three-dimensional peak flow stress diagrams at different deformation temperatures and strain rates of samples No.1 (a), No.2 (b), No.3 (c), No.4 (d) and T92 steel[9] (e)
Fig.6  Relationship curves of sample No.4 with respect to lnσp-lnε˙ (a), σp-lnε˙ (b), ln[sinh(ασp)]-lnε˙ (c) and ln[sinh(ασp)]-1000/T (d) (α—stress level parameter)
Fig.7  Relationship curve of lnZ-ln[sinh(ασp)] of sample No.4 (Z—Zener-Hollmon parameter)

Steel

No.

n

α

MPa-1

A

s-1

Q

kJ·mol-1

16.695210.007596.38581×1020531.825
26.324100.007153.99328×1017458.873
35.758050.007241.51538×1019492.812
44.432330.010605.67709×1016430.874
Table 2  Parameters of the constitutive equation of 1Cr9Al-(1~3)Ni(1~7)WVNbB high aluminum steel under peak stress
Fig.8  Comparisons between experimental and theoretical calculated values of samples No.1 (a), No.2 (b), No.3 (c) and No.4 (d) at 950~1150 ℃ and 0.1~10 s-1 strain rates
[1] Huang J K, He C C, Shi Y, et al. Thermodynamic analysis of Al-Fe intermetallic compounds formed by dissimilar joining of aluminum and galvanized steel [J]. J. Jilin Univ. (Eng. Technol. Ed.), 2014, 44: 1037
(黄健康, 何翠翠, 石 玗等. 铝/钢异种金属焊接接头界面Al-Fe金属间化合物生成及其热力学分析 [J]. 吉林大学学报(工学版), 2014, 44: 1037)
[2] Liu Z Y, La P Q, Zeng L, et al. Effect of aluminum on microstructure of HP40 steel [J]. J. Iron Steel Res. Int., 2007, 14: 373
[3] Ma X W, Zhang J F, Hao W W, et al. Microstructure and properties of NiAl-V alloy prepared by arc melting [J]. Rare Met. Mater. Eng., 2018, 47: 3528
(马雪微, 张建飞, 郝文纬等. 电弧熔炼态NiAl-V合金的组织演变及力学性能 [J]. 稀有金属材料与工程, 2018, 47: 3528)
[4] Guo L N, Huang Y, Liu L M, et al. Thermoplastic deformation behavior and hot processing map of 12Cr-ODS ferritic steel [J]. Hot Work. Technol., 2019, 48(9): 135
(郭丽娜, 黄 英, 刘立明等. 12Cr-ODS铁素体钢的热塑性变形行为和热加工图 [J]. 热加工工艺, 2019, 48(9): 135)
[5] Guo L N, Jia C C, Hu B F, et al. Microstructure and mechanical properties of an oxide dispersion strengthened ferritic steel by a new fabrication route [J]. Mater. Sci. Eng., 2010, A527: 5220
[6] Sun Y, Wan Z P, Hu L X, et al. Characterization of hot processing parameters of powder metallurgy TiAl-based alloy based on the activation energy map and processing map [J]. Mater. Des., 2015, 86: 922
[7] Chen M S, Lin Y C, Li K K, et al. A new method to establish dynamic recrystallization kinetics model of a typical solution-treated Ni-based superalloy [J]. Comput. Mater. Sci., 2016, 122: 150
[8] Jia D, Sun W R, Xu D S, et al. Dynamic recrystallization behavior of GH4169G alloy during hot compressive deformation [J]. J. Mater. Sci. Technol., 2019, 35: 1851
[9] Xu L Q. Research on phase transformation behaviors and heat-treatment process of T92 ferritic steel [D]. Tianjin: Tianjin University, 2013
(许林青. T92铁素体钢相变行为及热处理工艺的研究 [D]. 天津: 天津大学, 2013)
[10] Ban Y J, Zhang Y, Tian B H, et al. Hot deformation behavior and hot processing map of Cu-0.8Cr-0.3Zr-0.2Mg alloy [J]. Trans. Mater. Heat Treat., 2019, 40(9): 44
(班宜杰, 张 毅, 田保红等. Cu-0.8Cr-0.3Zr-0.2Mg合金热变形行为及热加工图 [J]. 材料热处理学报, 2019, 40(9): 44)
[11] Huang T Y. Materials Processing Technology [M]. Beijing: Tsinghua University Press, 2004: 20
(黄天佑. 材料加工工艺 [M]. 北京: 清华大学出版社, 2004: 20)
[12] Xiao Y H, Guo C. Flow stress model for steel 30Cr during hot deformation [J]. Forg. Stamp. Technol., 2018, 43: 176
(肖艳红, 郭 成. 30Cr钢高温变形流变应力模型 [J]. 锻压技术, 2018, 43: 176)
[13] Zhang W, Liu Y, Li H Z, et al. Constitutive modeling and processing map for elevated temperature flow behaviors of a powder metallurgy titanium aluminide alloy [J]. J. Mater. Process. Technol., 2009, 209: 5363
[14] Zhang P, Hu C, Zhu Q, et al. Hot compression deformation and constitutive modeling of GH4698 alloy [J]. Mater. Des., 2015, 65: 1153
[15] Li N, Zhao C Z, Jiang Z H, et al. Flow behavior and processing maps of high-strength low-alloy steel during hot compression [J]. Mater. Charact., 2019, 153: 224
[16] Fang X L, Jiang D J. Constitutive descriptions for hot compressed low-pressure rotor steel at elevated high temperature [J]. J. Mater. Sci., 2011, 46: 3646
[17] Zhang X T, Huang L, Li J J, et al. Flow behaviors and constitutive model of 300M high strength steel at elevated temperature [J]. J. Central South Univ. (Sci. Technol.), 2017, 48: 1439
(章晓婷, 黄 亮, 李建军等. 300M高强钢高温流变行为及本构方程 [J]. 中南大学学报(自然科学版), 2017, 48: 1439)
[18] Hu X L, Han P B, Lu S L, et al. High temperature flow behavior and constitutive model of 35CrMo steel [J]. J. Hebei Univ. Sci. Technol., 2019, 40: 351
(胡希磊, 韩鹏彪, 鲁素玲等. 35CrMo钢高温流变行为及其本构方程 [J]. 河北科技大学学报, 2019, 40: 351)
[19] Bruni C, Forcellese A, Gabrielli F. Hot workability and models for flow stress of NIMONIC 115 Ni-base superalloy [J]. J. Mater. Process. Technol., 2002, 125-126: 242
[20] Liang J X, Yong Q L, Zhang L, et al. Hot deformation behavior and its processing map of 1Cr17Ni1 duplex stainless steel [J]. Iron Steel, 2016, 51(9): 82
(梁剑雄, 雍岐龙, 张 良等. 1Cr17Ni1双相不锈钢的热变形行为及其热加工图 [J]. 钢铁, 2016, 51(9): 82)
[21] Li A. Flow stress behavior of 7AXX aluminum alloy during hot compression [J]. Atom. Energy Sci. Technol., 2019, 53: 504
(李 昂. 7AXX铝合金在热压缩状态下的流变行为 [J]. 原子能科学技术, 2019, 53: 504)
[22] Vo P, Jahazi M, Yue S, et al. Flow stress prediction during hot working of near-α titanium alloys [J]. Mater. Sci. Eng., 2007, A447: 99
[23] Zhang W, Yan D N, Zou D N, et al. Hot deformation behavior and constitutive relationship for super-low carbon 13Cr-5Ni-2Mo martensitic stainless steel [J]. Iron Steel, 2012, 47(5): 69
(张 威, 闫东娜, 邹德宁等. 超低碳13Cr-5Ni-2Mo马氏体不锈钢热变形行为及本构关系 [J]. 钢铁, 2012, 47(5): 69)
[24] Medina S F, Hernandez C A. General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels [J]. Acta Mater., 1996, 44: 137
[25] Wang Y, Lin D L, Law C C. A correlation between tensile flow stress and Zener-Hollomon factor in TiAl alloys at high temperatures [J]. J. Mater. Sci. Lett., 2000, 19: 1185
[1] YANG Lei, ZHAO Fan, JIANG Lei, XIE Jianxin. Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning[J]. 金属学报, 2023, 59(11): 1499-1512.
[2] LIU Qingqi, LU Ye, ZHANG Yifei, FAN Xiaofeng, LI Rui, LIU Xingshuo, TONG Xue, YU Pengfei, LI Gong. Thermal Deformation Behavior of Al19.3Co15Cr15Ni50.7 High Entropy Alloy[J]. 金属学报, 2021, 57(10): 1299-1308.
[3] Lina WANG, Ping YANG, Kai LI, Feng'e CUI, Weimin MAO. Phase Transformation and Texture Evolution During Cold Rolling and α'-M Reversion in High Manganese TRIP Steel[J]. 金属学报, 2018, 54(12): 1756-1766.
[4] CHEN Jun, LÜ Mengyang, TANG Shuai, LIU Zhenyu, WANG Guodong. MICROSTRUCTURE, MECHANICAL PROPERTIES AND INTERPHASE PRECIPITATION BEHAVIORS IN V-Ti MICROALLOYED STEEL[J]. 金属学报, 2014, 50(5): 524-530.
[5] CHEN Yan, WU Cuilan, XIE Pan, CHEN Wanglin, XIAO Hui, CHEN Jianghua. A PHASE-TRANSFORMATION-STRENGTHENED SURFACE LAYER ON Fe-20Mn-3Al-3Si STEEL FABRICATED BY MECHANICAL GRINDING[J]. 金属学报, 2014, 50(4): 423-430.
[6] SUN Xiurong, WANG Huizhen, YANG Ping, MAO Weimin. MECHANICAL BEHAVIORS AND MICRO-SHEAR STRUCTURES OF METALS WITH DIFFERENT STRUCTURES BY HIGH-SPEED COMPRESSION[J]. 金属学报, 2014, 50(4): 387-394.
[7] CHEN Jun, TANG Shuai, LIU Zhenyu, WANG Guodong. EFFECTS OF COOLING PROCESS ON MICROSTRUCTURE, MECHANICAL PROPERTIES AND PRECIPITATION BEHAVIORS OF NIOBIUM-TITANIUM MICRO-ALLOYED STEEL[J]. 金属学报, 2012, 48(4): 441-449.
[8] LU Fayun YANG Ping MENG Li MAO Weimin. BEHAVIOR OF MARTENSITE REVERSE TRANSFORMATION IN A HIGH MANGANESE TRIP STEEL DURING WARM DEFORMATION[J]. 金属学报, 2010, 46(10): 1153-1160.
[9] . A NEW FATIGUE-CREEP LIFE PREDICTION METHODOLOGY[J]. 金属学报, 2008, 44(10): 1167-1170 .
[10] Zhichao Fan. FATIGUE-CREEP INTERACTION LIFE PREDICTION METHOD BASED ON DUCTILITY EXHAUSTION[J]. 金属学报, 2006, 42(4): 415-420 .
[11] SONG Hongwei; SHI Bi; WANG Xiufang; ZHANG Junbao. Characterization of a low carbon low alloy steel by nanoindentation[J]. 金属学报, 2005, 41(3): 287-290 .
[12] CHEN Maoai; WU Chuansong; YANG Min; TANG Yimin; WU Renjie. Response of Second Phase Particles in Ti-V-Nb Microalloyed Steel During Weld Thermal Cycles[J]. 金属学报, 2004, 40(2): 148-154 .
[13] . [J]. 金属学报, 2002, 38(9): 941-946 .
[14] . [J]. 金属学报, 2000, 36(10): 1009-1014 .
[15] . [J]. 金属学报, 2000, 36(8): 801-804 .
No Suggested Reading articles found!