Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (6): 719-725    DOI: 10.11900/0412.1961.2016.00342
Orginal Article Current Issue | Archive | Adv Search |
Microstructure and Property of Cu/Al Joint Brazed with Al-Si-Ge Filler Metal
Zhiwei NIU,Zheng YE,Kaikai LIU,Jihua HUANG(),Shuhai CHEN,Xingke ZHAO
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

Zhiwei NIU,Zheng YE,Kaikai LIU,Jihua HUANG,Shuhai CHEN,Xingke ZHAO. Microstructure and Property of Cu/Al Joint Brazed with Al-Si-Ge Filler Metal. Acta Metall Sin, 2017, 53(6): 719-725.

Download:  HTML  PDF(5395KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Cu/Al brazing has good prospect for applications in the air conditioning and refrigeration industry. A suitable filler metal is the key of Cu/Al brazing. The chemical and physical properties of the filler metal have great influence on the brazing process and parameters. And the strength of the brazing joint is closely related to the properties of the filler metal and the brazing process. While the previous studies have not developed a kind of Cu/Al brazing filler metal which can achieve a tough joint at a low brazing temperature. In this work, the Al-5.6Si-25.2Ge filler metal was first used to braze Cu/Al dissimilar metals, and the melting characteristics of the filler metal, spreading wettability, Cu interfacial structure and strength of brazed joint were investigated systematically. Additionally, the common Zn-22Al filler metal was also used for comparison. The results show that the Al-5.6Si-25.2Ge filler metal possesses low melting temperature (about 541 ℃) and excellent spreading wettability on Cu and Al base metals. The interfacial structure of Al-5.6Si-25.2Ge/Cu was CuAl2/CuAl/Cu3Al2. The thickness of planar CuAl and Cu3Al2 phases was only 1~2 μm, and the thickness of cellular CuAl2 phase was about 3 μm. The interfacial structure of Zn-22Al/Cu was CuAl2/CuAl/Cu9Al4, but the average thickness of the CuAl2 layer was up to 15 μm. The test results of the shearing strength show that the shearing strength of the Cu/Al joint brazed with Zn-22Al filler metal was only 42.7 MPa, but the shearing strength brazed with Al-5.6Si-25.2Ge filler metal was higher (53.4 MPa).

Key words:  Al-Si-Ge filler metal      Cu/Al joint      interfacial structure      shearing strength     
Received:  01 August 2016     

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00342     OR     https://www.ams.org.cn/EN/Y2017/V53/I6/719

Fig.1  Schematic of the brazed specimen (unit: mm)
Fig.2  SEM images (a, c) and XRD spectra (b, d) of Al-5.6Si-25.2Ge (a, b) and Zn-22Al (c, d) filler metals
Fig.3  DTA curves of filler metals
Fig.4  SEM images (a, c) and EDS element line scanning along the lines in Figs.4a and c (b, d) of Cu/Al joints brazed with Al-5.6Si-25.2Ge (a, b) and Zn-22Al (c, d) filler metals
Position
in Fig.4
Atomic fraction / % Phase
Al Cu Ge Si
A 67.15 32.85 - - CuAl2
B 48.22 51.78 - - CuAl
C 41.41 58.59 - - Cu3Al2
D - - 78.54 21.46 Ge solid solution
E 69.09 30.91 - - CuAl2
F 51.17 48.83 - - CuAl
G 29.43 70.57 - - Cu9Al4
Table 1  EDS results of phases in the interfacial zones of the Cu/Al joints in Fig.4
Fig.5  SEM images of the fracture surface of the Cu/Al joints brazed with Al-5.6Si-25.2Ge (a) and Zn-22Al (b) filler metals
Fig.6  Typical SEM image of the fracture position of the Cu/Al joint
[1] Ning F Z.Low temperature friction welding of aluminum to copper[J]. Acta Metall. Sin., 1978, 14: 179
[1] (宁斐章. 铝-铜低温摩擦焊[J]. 金属学报, 1978, 14: 179)
[2] Zhang H T, Liu D, Feng J C, et al.Reactive contact brazing between Aluminium alloy and copper by high frequency induction metho[J]. Trans. China Weld. Inst., 2012, 33(3): 89
[2] (张洪涛, 刘多, 冯吉才等. 铝/铜高频感应接触反应钎焊[J]. 焊接学报, 2012, 33(3): 89)
[3] Cong Q, Xu F M, Tan Y, et al.Influence of heat treatment on microstructure and mechanical properties of Al/Al-Cu graded materials[J]. Acta Metall. Sin.(Engl. Lett.), 2011, 24: 118
[4] Easton D, Zhang Y X, Wood J, et al. Brazing development and interfacial metallurgy study of tungsten and copper joints with eutectic gold copper brazing alloy [J]. Fusion Eng. Des., 2015, 98-99: 1956
[5] Fu W, Song X G, Hu S P, et al.Brazing copper and alumina metallized with Ti-containing Sn0.3Ag0.7Cu metal powder[J]. Mater. Des., 2015, 87: 579
[6] Xing F, Yao J, Liang J W, et al.Influence of intermetallic growth on the mechanical properties of Zn-Sn-Cu-Bi/Cu solder joints[J]. J. Alloys Compd., 2015, 649: 1053
[7] Zhou J, Sun Y S, Xue F.Microstructures and properties of Sn-Zn-Bi solder alloys[J]. Acta Metall. Sin., 2005, 41: 743
[7] (周健, 孙扬善, 薛烽. 低熔点Sn-Zn-Bi无铅钎料的组织和性能[J]. 金属学报, 2005, 41: 743)
[8] Huang M L, Kang N, Zhou Q, et al.Effect of Ni content on mechanical properties and corrosion behavior of Al/Sn-9Zn-xNi/Cu Joints[J]. J. Mater. Sci. Technol., 2012, 28: 844
[9] Xiao Y, Ji H J, Li M Y, et al.Ultrasound-assisted brazing of Cu/Al dissimilar metals using a Zn-3Al filler metal[J]. Mater. Des., 2013, 52: 740
[10] Ji F, Xue S B, Lou J Y, et al.Microstructure and properties of Cu/Al joints brazed with Zn-Al filler metals[J]. Trans. Nonferrous. Met. Soc. China, 2012, 22: 281
[11] Ji F, Xue S B.Growth behaviors of intermetallic compound layers in Cu/Al joints brazed with Zn-22Al and Zn-22Al-0.05Ce filler metals[J]. Mater. Des., 2013, 51: 907
[12] Yan F, Xu D R, Wu S C, et al.Microstructure and phase constitution near the interface of Cu/3003 torch brazing using Al-Si-La-Sr filler[J]. J. Mech. Sci. Technol., 2012, 26: 4089
[13] Xia C Z, Li Y J, Puchkov U A, et al.Microstructure and phase constitution near the interface of Cu/Al vacuum brazing using Al-Si filler metal[J]. Vacuum, 2008, 82: 799
[14] Yang H, Huang J H, Chen S H, et al.Influence of the composition of Zn-Al filler metal on the interfacial structure and property of Cu/Zn-Al/Al brazed joint[J]. Acta Metall. Sin., 2015, 51: 364
[14] (羊浩, 黄继华, 陈树海等. Zn-Al钎料成分对Cu/Zn-Al/Al钎焊接头界面结构及性能的影响[J]. 金属学报, 2015, 51: 364)
[15] Zhang Q Y, Zhuang H S.Brazing and Soldering Manual [M]. Beijing: China Machine Press, 2008: 55
[15] (张启运, 庄鸿寿. 钎焊手册 [M]. 北京: 机械工业出版社, 2008: 55)
[16] Zuo K, Zuo T J, Qiu G C, et al.Comparison of corrosion resistance between Al-Si brazing filler and Al-Zn brazing filler [A]. Proceedings of the Eleventh National Symposium on Refrigerators, Air Conditioners and Compressors[C]. Chuzhou: Chinese Association of Refrigeration, 2012: 293
[16] (左柯, 左铁军, 邱国才等. Al-Si钎料和Al-Zn钎料抗腐蚀性能比较 [A]. 第十一届全国电冰箱(柜)、空调器及压缩机学术交流大会论文集[C]. 滁州: 中国制冷学会, 2012: 293)
[17] Zheng J F, Chen D J, Cai Q, et al.Comparison of corrosion resis tance between Al-Si brazing filler and Al-Zn brazing filler[J]. Household Appl. Technol., 2013, (10): 78
[17] (郑建峰, 陈德娟, 蔡蔷等. Al-Si钎料和Al-Zn钎料耐蚀性能对比研究[J]. 家电科技, 2013, (10): 78)
[18] Hosch T, Napolitano R E.The effect of the flake to fiber transition in silicon morphology on the tensile properties of Al-Si eutectic alloys[J]. Mater. Sci. Eng., 2010, A528: 226
[19] Luo W, Wang L T, Wang Q M, et al.A new filler metal with low contents of Cu for high strength aluminum alloy brazed joints[J]. Mater. Des., 2014, 63: 263
[20] Liu H J, Shen J J.Progress in welding process of Al/Cu dissimilar metals[J]. Weld. Join., 2009, (3): 14
[20] (刘会杰, 沈俊军. 铝/铜异种材料的焊接研究[J]. 焊接, 2009, (3): 14)
[21] Niu Z W, Huang J H, Chen S H, et al.Effects of germanium additions on microstructures and properties of Al-Si filler metals for brazing aluminum[J]. Trans. Nonferrous. Met. Soc. China, 2016, 26: 775
[22] Schubert T H, Loser W, Teresiak A, et al.Preparation and phase transformations of melt-spun Al-Ge-Si brazing foils[J]. J. Mater. Sci., 1997, 32: 2181
[23] Niu Z W, Huang J H, Yang H, et al.Preparation and properties of a novel Al-Si-Ge-Zn filler metal for brazing aluminum[J]. J. Mater. Eng. Perform., 2015, 24: 2327
[24] Yang L S, Wang H M, Chen Q D.High Aluminum Zn Alloys [M]. Xi'an: Northwestern Polytechnic University Press, 1997: 17
[24] (杨留栓, 王洪敏, 陈全德. 高铝锌合金 [M]. 西安: 西北工业大学出版社, 1997: 17)
[25] Zhang M, Xue S B, Dai W, et al.Effect of Ag on properties of Zn-Al brazing filler metal[J]. Trans. China Weld. Inst., 2010, 31(10): 73
[25] (张满, 薛松柏, 戴玮等. Ag元素对Zn-Al钎料性能的影响[J]. 焊接学报, 2010, 31(10): 73)
[1] Tongxiang FAN, Yue LIU, Kunming YANG, Jian SONG, Di ZHANG. Recent Progress on Interfacial Structure Optimization and Their Influencing Mechanism of Carbon Reinforced Metal Matrix Composites[J]. 金属学报, 2019, 55(1): 16-32.
[2] YANG Hao, HUANG Jihua, CHEN Shuhai, ZHAO Xingke, WANG Qi, LI Dehua. INFLUENCE OF THE COMPOSITION OF Zn-Al FILLER METAL ON THE INTERFACIAL STRUCTURE AND PROPERTY OF Cu/Zn-Al/Al BRAZED JOINT[J]. 金属学报, 2015, 51(3): 364-370.
[3] DAI Fuzhi, ZHANG Wenzheng. AN INVESTIGATION ON THE EQUILIBRIUM MOR- PHOLOGY AND INTERFACIAL STRUCTURES OF PRICIPITATES IN DUPLEX STAINLESS STEEL BY ATOMISTIC SIMULATION[J]. 金属学报, 2014, 50(9): 1123-1127.
[4] WANG Hui HE Siyuan CHU Xuming HE Deping . INTERFACIAL STRUCTURE AND MECHANICAL PROPERTIES OF ALUMINIUM FOAM JOINTS FLUXLESS--SOLDERED WITH Zn--Al--Cu BASE ALLOY[J]. 金属学报, 2009, 45(6): 723-728.
[5] MA Yuequn; LIANG Songmao; CHEN Rongshi; HAN Enhou. Characterization of Mushy Zone Properties of AZ6x Magnesium Alloys[J]. 金属学报, 2007, 43(3): 254-258 .
[6] LI Fengzhao; AO Qing; GU Yingni; JIANG Jiang; SUN Dongsheng (Shandong University of Technology; Jinan 250061)DAI Jiyan; PENG Hongying (Laboratory of Atomic Imaging of Solids; Institute of Metal Research; Chinese Academy of Sciences;Shenyang 110015). TEM OBSERVATION OF THE FINE STRUCTURE OF BAINITE[J]. 金属学报, 1997, 33(3): 241-247.
No Suggested Reading articles found!