Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (6): 762-768    DOI: 10.11900/0412.1961.2014.00473
Current Issue | Archive | Adv Search |
MAGNETOCALORIC EFFECT OF La0.9Ce0.1Fe11.44Si1.56Hy ALLOY AND POWER BONDED BLOCK
Lijuan MU1,2,3,Jiaohong HUANG3(),Cuilan LIU3,Juan CHENG3,Naikun SUN4,Zengqi ZHAO3
1 School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051
2 School of Mathematics, Physics and Biological Engineering, Inner Mongolia University of Science and Technology, Baotou 014010
3 Baotou Research Institute of Rare Earth, Baotou 014030
4 School of Science, Shenyang Ligong University, Shenyang 110159
Cite this article: 

Lijuan MU, Jiaohong HUANG, Cuilan LIU, Juan CHENG, Naikun SUN, Zengqi ZHAO. MAGNETOCALORIC EFFECT OF La0.9Ce0.1Fe11.44Si1.56Hy ALLOY AND POWER BONDED BLOCK. Acta Metall Sin, 2015, 51(6): 762-768.

Download:  HTML  PDF(844KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Recently, La(Fe, Si)13-based magnetic refrigeration materials have been widely explored due to the advantages of giant magnetocaloric effect (MCE), tunable Curie temperature (TC), low cost of raw materials and excluding deleterious elements compared to other room-temperature giant MCE materials such as Gd5(Ge1-xSix)4, MnFeP0.45As0.55 and MnAs based compounds. In this work, in order to shift the TC to around room temperature and maintain the large MCE, the method of absorbing hydrogen was employed. La0.9Ce0.1Fe11.44Si1.56 hydride was prepared by saturated hydrogen absorption and then hydrogen contents and TC of the hydrides were controlled by subsequent dehydrogenation at different temperatures (Td=200~250 ℃ for 3 h). The phase structure and magnetocaloric effect were investigated. The results show that the samples possess the cubic NaZn13-type structure with a small amount of a-Fe as impurity phase. TC exhibits an approximately linear decrease with increasing the dehydrogenation temperature. The isothermal magnetic entropy change (ΔSm) of the hydrides decreases compared with the parent compound, which is mainly attributed to the fact that the field-induced itinerant-electron metamagnetic transition has been weakened upon hydrogen absorption. For the sample desorbed hydrogen at temperatures above 230 ℃, ΔSm is remarkably decreased and favorably the magnetic hysteresis loss has been reduced simultaneously. With further increasing the temperature to 250 ℃, ΔSm curve is broadened, weakening the characteristic of the first-order phase transition. Due to the intrinsic brittleness of hydrides, the preparation of a certain shape is of great importance for practical application. For a magnetic field change of 1.5 T, the maximum adiabatic temperature change (ΔTad) and ΔSm for the bonded block of fully hydrogen absorption La0.9Ce0.1Fe11.44Si1.56 hydride are about 2.7 K and 7.5 J/(kgK), respectively, which are larger than those of La(Fe, Co, Si)13 materials in the same magnetic field change range. In conclusion, the bonded La0.9Ce0.1Fe11.44Si1.56 hydrides with good MCE and different TC have been successfully prepared and will be very useful for the practical application of layered magnetic refrigerants at ambient temperature under low field change in magnetic refrigerators.

Key words:  La0.9Ce0.1Fe11.44Si1.56Hy      hydrogen absorption      dehydrogenation      power bond      magnetocaloric effect     
Received:  15 January 2015     
Fund: Supported by National Natural Science Foundation of China (No.51261001) and Liaoning Provincial Natural Science Foundation (No.2013020105)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00473     OR     https://www.ams.org.cn/EN/Y2015/V51/I6/762

Fig.1  Room temperature XRD spectra for La0.9Ce0.1Fe11.44Si1.56 alloy and La0.9Ce0.1Fe11.44Si1.56Hy
Fig.2  Thermogravimetric (TG) curve of La0.9Ce0.1Fe11.44Si1.56Hy
Fig.3  Magnetization-temperature (M-T) (a) and isothermal magnetic entropy change (b) curves of La0.9Ce0.1Fe11.44Si1.56 and the hydride (m0—permeability of vacuum, H—magnetic field intensity, M—magnetization, ΔSm—isothermal magnetic entropy change)
Fig.4  M-T curves of La0.9Ce0.1Fe11.44Si1.56Hy after 3 h dehydrogenation at different dehydrogenation temperatures (Td) (a) and relationship of Curie temperature TC and Td (b)
Fig.5  M-H curves of La0.9Ce0.1Fe11.44Si1.56Hy after 3 h dehydrogenation at 200 ℃ (a) and Arrott plots (b) under increasing and decreasing fields
Fig.6  M-H curves of La0.9Ce0.1Fe11.44Si1.56Hy after 3 h dehydrogenation at 250 ℃ (a) and Arrott plots (b) under increasing and decreasing fields
Fig.7  ΔSm of La0.9Ce0.1Fe11.44Si1.56Hy after 3 h dehydrogenation at different temperatures
Fig.8  Temperature dependences of adiabatic temperature change (ΔTad) (a) and ΔSm (b) for the bonded La0.9Ce0.1Fe11.44Si1.56Hy (The insets in Fig.8b show the bonded samples)
[1] Pecharsky V K, Gschneidner Jr K A. Phys Rev Lett, 1997; 78: 4494
[2] Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H, Zhang X X. Appl Phys Lett, 2001; 78: 3675
[3] Fujieda S, Fujita A, Fukamichi K. Appl Phys Lett, 2002; 81: 1276
[4] Tegus O, Brück E, Buschow K H J, de Boer F R. Nature, 2002; 415: 150
[5] Zhang M, Liu D M, Liu C X, Huang Q Z, Wang S B, Zhang H, Yue M. Acta Metall Sin, 2013; 49: 783 (张孟, 刘丹敏, 刘翠秀, 黄清镇, 王少博, 张虎, 岳明. 金属学报, 2013; 49: 783)
[6] Dung N H, Ou Z Q, Caron L, Zhang L, Cam Thanh D T, de Wijs G A, de Groot R A, Buschow K H J, Brück E. Adv Energy Mater, 2011; 1: 1215
[7] Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Manosa L, Planes A. Nat Mater, 2005; 4: 450
[8] Shen J, Li Y X, Sun J R, Shen B G. Chin Phys, 2009; 18B: 2058
[9] Balli M, Fruchart D, Gignoux D. J Phys: Condens Matter, 2007; 19: 236230
[10] Cheng J, Liu G D, Huang J H, Liu C L, Jin P Y, Yan H W. J Rare Earths, 2013; 31: 1163
[11] Li F A, Song L, Bao L H, Hasi C L, Tegus O, Huang J H. Acta Metall Sin, 2008; 44: 371 (李福安, 松 林, 包黎红, 哈斯朝鲁, 特古斯, 黄焦宏. 金属学报, 2008; 44: 371)
[12] Chen Y F, Wang F, Shen B G, Hu F X, Cheng Z H, Wang G J, Sun J R. Chin Phys, 2002; 11: 741
[13] Fujita A, Fujieda S, Fukamichi K, Yamazaki Y, Iijima Y. Mater Trans, 2002; 43: 1202
[14] Fujita A, Fukamichi K. J Alloys Compd, 2005; 404: 554
[15] Barcza A, Katter M, Zellmann V, Russek S, Jacobs S, Zimm C. IEEE Trans Magn, 2011; 47: 3391
[16] Krautz M, Moore J D, Skokov K P, Liu J, Teixeira C S, Schafer R, Schultz L, Gutfleisch O. J Appl Phys, 2012; 112: 083918
[17] Zimm C, Jacobs S. J Appl Phys, 2013; 113: 17A908
[18] Legait U, Guillou F, Kedous-Lebouc A, Hardy V, Almanza M. Int J Refrigeration, 2014; 37: 147
[19] Balli M, Sari O, Mahmed C, Besson C, Bonhote P, Duc D, Forchelet J. In: Egolf P W, ed., 4th IIF-IIR Int Conf on Magnetic Refrigeration at Room Temperature, Paris: Institute of Refrigeraton and Institut International du Froid of France, 2010: 313
[20] Tusek J, Kitanovski A, Tomc U, Favero C, Poredos A. Int J Refrigeration, 2014; 37: 117
[21] Zhang H, Shen B G, Xu Z Y, Zheng X Q, Shen J, Hu F X, Sun J R, Long Y. J Appl Phys, 2012; 111: 07A909
[22] Chen Y F, Wang F, Shen B G, Wang G J, Sun J R. J Appl Phys, 2003; 93: 1323
[23] Yamada H. Phys Rev, 1993; 47B: 11211
[24] Huang J H, Sun N K, Liu C L, Ge Y M, Zhang T, Liu F, Si P Z. Acta Metall Sin (Engl Lett), 2014; 27: 27
[25] Chen X, Chen Y G, Tang Y B. J Alloys Compd, 2011; 509: 2864
[26] Pathak A K, Basnyat P, Dubenko I, Stadler S, Ali N. J Appl Phys, 2009; 106: 063917
[27] Balli M, Fruchart D, Sari O, Gignoux D, Huang J H, Hu J, Egolf P W. J Appl Phys, 2009; 106: 023902
[1] ZUO Liang, LI Zongbin, YAN Haile, YANG Bo, ZHAO Xiang. Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys[J]. 金属学报, 2021, 57(11): 1396-1415.
[2] Yaoxiang GENG,Ojied TEGUS,Haibin WANG,Chuang DONG,Yuxin WANG. Effect of Sn Addition on Microstructure and Magnetism of MnFe(P, Si) Alloy[J]. 金属学报, 2017, 53(1): 77-82.
[3] WANG Shaobo, LIU Danmin, XIAO Weiqiang, ZHANG Zhenlu, YUE Ming, ZHANG Jiuxing. RESEARCH OF THE MAGNETOCALORIC PROPER- TIES IN Mn1.2Fe0.8P0.74Ge0.26-xSex COMPOUNDS[J]. 金属学报, 2014, 50(9): 1109-1114.
[4] WANG Jinhong WANG Rongshan WENG Likui ZHANG Yanwei GENG Jianqiao. HYDROGEN ABSORPTION AND DESORPTION PERFORMANCES OF THE SECOND PHASES IN ZIRCONIUM ALLOY WITH Nb[J]. 金属学报, 2011, 47(9): 1200-1204.
[5] LI Ying DING Yushi HU Jingtao WANG Changzhen. STUDY ON THE BEHAVIOR OF HYDROGEN IN STEEL HEAT TREATMENT PROCESS WITH PROTON CONDUCTOR SENSOR[J]. 金属学报, 2011, 47(5): 553-558.
[6] WANG Dongmei SONG Lin WANG Yaohui ZHANG Wei Bilige Tegus O. MAGNETOCALORIC EFFECT IN MnFeP0.63Ge0.12Si0.25Bx (x=0, 0.01, 0.02, 0.03) COMPOUNDS[J]. 金属学报, 2011, 47(3): 344-348.
[7] WANG Dong; FAN Jianhua; LIU Chunming; WANG Changzhen. Characteristics of Proton Conductors BaCe1-xYxO3- and BaCe0.9Sm0.1O3- and Dehydrogenation of Al Melt with Composed Hydrogen Pump[J]. 金属学报, 2007, 43(11): 1228-1232 .
[8] QIAN Jiuxin;ZHANG Yawen;CHEN Xudong Peking University; Beijing. HYDROGEN ABSORPTION OF TiFe+xwt-%La ALLOYS WITH ALTERNATE LAYER STRUCTURE[J]. 金属学报, 1992, 28(4): 1-4.
[9] DUO Liang;XU Zuxiong;MA Ruzhang Beijing University of Iron and Steel TechnologyInstitute of High Energy Physics;Academia Sinica; Zhongguancun; Beijing. EFFECT OF HYDROGEN ABSORPTION ON MAGNETIC PROPERTIES OF AMORPHOUS Fe_(90-x)V_xZr_(10) ALLOYS[J]. 金属学报, 1988, 24(4): 348-353.
No Suggested Reading articles found!