Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (6): 753-761    DOI: 10.11900/0412.1961.2014.00631
Current Issue | Archive | Adv Search |
FORMATION AND MODELING OF VERTICAL OUTSIDE WALL OF COMPOENTS INCLINING INWARD IN LASER SOLID FORMING
Menghua SONG,Xin LIN,Fenggang LIU,Haiou YANG,Weidong HUANG()
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
Cite this article: 

Menghua SONG, Xin LIN, Fenggang LIU, Haiou YANG, Weidong HUANG. FORMATION AND MODELING OF VERTICAL OUTSIDE WALL OF COMPOENTS INCLINING INWARD IN LASER SOLID FORMING. Acta Metall Sin, 2015, 51(6): 753-761.

Download:  HTML  PDF(5571KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The vertical outside wall is prone to incline inward in laser solid forming, which will deteriorate the dimension precision and processing stability. For solving this problem, samples with different amount of deposited layers were prepared and the variation of boundary single-track clad shape and formation of vertical outside wall inclining inward were investigated. Based on the method of constructing cross-section profile of the single-track clad by height of powders accumulated in molten pool, an analytical model was developed to describe the evolution of vertical outside wall during multilayer superimposition. A series of vertical outside walls under different width/height ratios and critical defocus distance were constructed with this model to investigate their influence. Results indicate that the deposited single-track clad will influence the formation of single-track clad under depositing. Due to the arc-like cross-section profile of single-track clad, the molten pool will shrink inward, which leads the outer edge of boundary single-track clad to shrink inward then the vertical outside wall to incline inward. However, this incline will decrease with the increase of deposited height. For the initial single-track clad with fixed width, decreasing critical defocus distance can decrease the inward incline but increase the offset from the preset dimension. The width/height ratio almost has no effect on outside wall.

Key words:  laser solid forming      vertical outside wall      inward incline      analytical model     
Fund: Supported by National Natural Science Foundation of China (No.51323008), National Basic Research Program of China (No.2011CB610402), High Technology Research and Development Program of China (No.2013AA031103) and Fund of State Key Laboratory of Solidification Processing in NWPU (No.91-QZ-2014)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00631     OR     https://www.ams.org.cn/EN/Y2015/V51/I6/753

Fig.1  Schematic of destination geometry of sample prepared by laser solid forming and vertical outside wall
Fig.2  Outside wall profiles of laser solid formed 2Cr13 stainless steel with single-track clad (a), 7 layers (b), 15 layers (c) and 36 layers (d)
Fig.3  Cross-section profiles of top boundary single-track clad of laser solid formed 2Cr13 stainless steel with different layers (The vertical dotted lines indicate relative offset of outside edge of top boundary clad from the initial boundary clad)
Fig.4  Schematic of the influence of deposited boundary single-track clad on depositing clad during multilayer superimposition
Fig.5  Schematic of coordinate system and laser beam shape (b—half divergent angle, H—distance of the maximum laser spot from initial substrate surface)
r / mm cot b H / mm R Amount of deposited layer Height / mm
1.5 150 0.3 3 20 20.00
0.5 5 33 19.80
0.9 7 46 19.71
Table 1  The parameters for reconstructing outside wall profiles
Fig.6  The constructed outside wall with H=0.3, R=3 (a), H=0.3, R=5 (b), H=0.3, R=7 (c), H=0.5, R=3 (d), H=0.5, R=5 (e), H=0.5, R=7 (f), H=0.9, R=3 (g), H=0.9, R=5 (h) and H=0.9, R=7 (i)
Fig.7  Schematic definition of the angle between two adjacent layers a and dimension offset Δf
Fig.8  Variations of angle between adjacent layers with the cladding layer number (a) and deposition height (b)
Fig.9  Variations of dimension offset (Δf) with cladding layer number (a) and deposition height (b)
[1] Huang W D,Lin X,Chen J,Liu Z X,Li Y M. Laser Solid Forming—the Rapid and Free Fabricating of High Performance Metal Components. Xi'an: Northwestern Polytechnical University Press, 2007: 1 (黄卫东,林 鑫,陈 静,刘振侠,李延民. 激光立体成形—高性能致密金属零件的快速自由成形. 西安: 西北工业大学出版社, 2007: 1)
[2] Liu F, Lin X, Yang G, Song M, Chen J, Huang W. Opt Laser Technol, 2011; 43: 208
[3] Yang G, Lin X, Liu F, Hu Q, Ma L, Li J, Huang W. Intermetallics, 2012; 22: 110
[4] Cao J, Liu F, Lin X, Huang C, Chen J, Huang W. Opt Laser Technol, 2013; 45: 228
[5] Lin X, Cao Y, Wu X, Yang H, Chen J, Huang W. Mater Sci Eng, 2012; A553: 80
[6] Vrancken B, Thijs L, Kruth J P, Van Humbeeck J. Acta Mater, 2014; 68: 150
[7] Yang H O, Song M H, Yang D H, Lin X, Chen J, Huang W D. Appl Laser, 2011; 31: 384 (杨海欧, 宋梦华, 杨东辉, 林 鑫, 陈 静, 黄卫东. 应用激光, 2011; 31: 384)
[8] Xu Q D, Lin X, Song M H, Yang H O, Huang W D. Acta Metall Sin, 2013; 49: 605 (徐庆东, 林 鑫, 宋梦华, 杨海欧, 黄卫东. 金属学报, 2013; 49: 605)
[9] Huang W D, Lin X. Mater China, 2010; (6): 12 (黄卫东, 林 鑫. 中国材料进展, 2010; (6): 12)
[10] Gu D D, Meiners W, Wissenbach K, Poprawe R. Int Mater Rev, 2012; 57: 133
[11] Li Y, Yang H, Lin X, Huang W, Li J, Zhou Y. Mater Sci Eng, 2003; A360: 18
[12] De Oliveira U, Ocelik V, De Hosson J T M. Surf Coat Technol, 2005; 197: 127
[13] Fallah V, Alimardani M, Corbin S F, Khajepour A. Comp Mater Sci, 2011; 50: 2124
[14] Zhu G X, Zhang A F, Li D C. Chin J Laser, 2010; (1): 296 (朱刚贤, 张安峰, 李涤尘. 中国激光, 2010; (1): 296)
[15] Kaplan A, Groboth G. J Manuf Sci Eng, 2001; 123: 609
[16] Aiyiti W, Zhao W, Lu B, Tang Y. Rapid Prototyping J, 2006; 12: 165
[17] Li Y, Ma J. Surf Coat Technol, 1997; 90: 1
[18] Song M, Lin X, Yang G, Cui X, Yang H, Huang W. J Mater Process Technol, 2014; 214: 701
[19] Bi G, Gasser A, Wissenbach K, Drenker A, Poprawe R. Surf Coat Technol, 2006; 201: 2676
[20] Tan H, Chen J, Zhang F, Lin X, Huang W. Int J Mach Tools Manuf, 2010; 50: 1
[21] Zhu G, Li D, Zhang A, Pi G, Tang Y. Opt Laser Technol, 2012; 44: 349
[22] Liu J, Li L. Opt Laser Technol, 2005; 37: 478
[23] Liu J. Opt Laser Technol, 2007; 39: 1532
[24] Tan H, Chen J, Zhang F, Lin X, Huang W. Opt Laser Technol, 2010; 42: 47
[25] Picasso M, Marsden C F, Wagniere J D, Frenk A, Rappaz M. Metall Mater Trans, 1994; 25B: 281
[26] Lin J, Hwang B C. Opt Laser Technol, 1999; 31: 571
[27] Tan H, Zhang F, Wen R, Chen J, Huang W. Opt Laser Eng, 2012; 50: 391
[1] Shixin XU, Wei YU, Shujia LI, Kun WANG, Qisong SUN. Effects of Pre-Deformation Temperature on Nanobainite Transformation Kinetics and Microstructure[J]. 金属学报, 2018, 54(8): 1113-1121.
[2] Yuanyuan ZHANG,Xin LIN,Lei WEI,Yongming REN. Crystallization Behavior of Laser Solid Forming of Annealed Zr55Cu30Al10Ni5 Powder[J]. 金属学报, 2017, 53(7): 824-832.
[3] Kan SONG,Kai YU,Xin LIN,Jing CHEN,Haiou YANG,Weidong HUANG. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF HEAT TREATMENT LASER SOLID FORMING SUPERALLOY INCONEL 718[J]. 金属学报, 2015, 51(8): 935-942.
[4] LIU Fencheng, LIN Xin, YU Xiaobin, HUANG Chunping, HUANG Weidong. EVOLUTION OF INTERFACE AND CRYSTAL ORIENTATION OF LASER SOLID FORMED GH4169 SUPERALLOY DURING RECRYSTALLIZATION[J]. 金属学报, 2014, 50(4): 463-470.
[5] ZHAO Guangwei LI Xinzhong XU Daming FU Hengzhi DU Yong HE Yuehui. A UNIFIED ANALYTICAL MODEL FOR THE PRIMARY SOLIDIFICATION PATH IN TERNARY ALLOYS[J]. 金属学报, 2011, 47(9): 1135-1140.
[6] XU Xiaojing LIN Xin HUANG Weidong WANG Liang. MICROSTRUCTURE AND MECHANICAL PROPERTY OF Ti-80%Ni ALLOY PREPARED BY LASER SOLID FORMING[J]. 金属学报, 2010, 46(9): 1081-1085.
[7] LIU Fencheng LIN Xin YANG Gaolin HUANG Chunping CHEN Jing HUANG Weidong. MICROSTRUCTURES AND MECHANICAL PROPERTIES OF LASER SOLID FORMED NICKLE BASE SUPERALLOY INCONEL 718 PREPARED IN DIFFERENT ATMOSPHERES[J]. 金属学报, 2010, 46(9): 1047-1054.
[8] YANG Mocong LIN Xin XU Xiaojing CHEN Jing HUANG Weidong. MICROSTRUCTURE AND PHASE EVOLUTION IN Ti60--Ti2AlNb GRADIENT MATERIAL PREPARED BY LASER SOLID FORMING[J]. 金属学报, 2009, 45(6): 729-736.
[9] LIN Xin; LV Xiaowei LV; Jing Chen; Weidong Huang. RESEARCH ON LASER SOLID FORMING OF A FUNCTIONALLY GRADED TI-TI2ALNB ALLOY[J]. 金属学报, 2008, 44(8): 1006-1012 .
[10] Xin Lin; Jing Chen; Weidong Huang. MICROSTRUCTURE EVOLUTION OF Ti-20wt%Ni ALLOY IN LASER SOLID FORMING[J]. 金属学报, 2008, 44(8): 1013-1018 .
No Suggested Reading articles found!