Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (7): 881-889    DOI:
Current Issue | Archive | Adv Search |
STRESS CORROSION CRACKING AND ITS MECHANISM OF 16Mn STEEL AND HEAT-AFFECTED ZONE IN ALKALINE SULFIDE SOLUTIONS
HAO Wenkui,LIU Zhiyong,LI Xiaogang,DU Cuiwei
Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

HAO Wenkui,LIU Zhiyong,LI Xiaogang,DU Cuiwei. STRESS CORROSION CRACKING AND ITS MECHANISM OF 16Mn STEEL AND HEAT-AFFECTED ZONE IN ALKALINE SULFIDE SOLUTIONS. Acta Metall Sin, 2013, 49(7): 881-889.

Download:  PDF(5115KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Stress corrosion cracking (SCC) of 16Mn steel and its heat-affected zone (HAZ) in alkaline solution with sulfide and Cl- was investigated by electrochemical technology, slow strain rate tensile (SSRT) test and U-bent specimen immersing test. Results show that the original microstructure, the coarse grain structure acquired by air cooling treatment and the hardening microstructure obtained from quenching performed a passivation behavior in alkaline sulfide solution. Correspondingly, the passivation current density of them decreased gradually with the cooling rate increased. The corrosion potential of the quenching microstructure, air-cooling microstructure and original microstructure decreases sequentially, indicating that HAZ is the cathodic area and the fusion line as well as bulk steel anodic area. Based on the results, the corrosion is feasible to happen nearby the fusion line would increase, and thus the residual tensile stress area would be exposed to the electrolyte after long-term service, which results in SCC. The susceptibility of SCC was lowered down gradually among hardening microstructure, coarse grain microstructure and original microstructure. SCC mechanism of 16Mn steel in the alkaline solution containing sulfide was anodic dissolution (AD) in terms of intergranular fracture.

Key words:  16Mn steel      alkaline, sulfide      stress corrosion cracking (SCC)     
Received:  12 December 2012     

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2013/V49/I7/881

[1] Turnbull A, Nimmo B.  Corros Eng Sci Technol, 2005; 40: 103

[2] Liu X C, Liu F. Chem Eng Equip, 2010; (10): 44
(刘晓春, 刘锋. 化学工程与装备, 2010; (10): 44)
[3] Veloz M A, Gonzalez I.  Electrochim Acta, 2002; 48: 135
[4] Ma H Y, Cheng X L, Li G Q, Chen S H, Quan Z L, Zhao S Y, Niu L.  Corros Sci, 2000; 42: 1669
[5] Shoesmith D W, Bailey M G, Ikeda B.  Electrochim Acta, 1978; 23: 1329
[6] Shoesmith D W, Taylor P, Bailey M G, Ikeda B.  Electrochim Acta, 1978; 23: 903
[7] Yin Z F, Zhao W Z, Bai Z Q.  Electrochim Acta, 2004; 53: 3690
[8] Yang H Y, Chen J J, Cao C N, Cao D Z.  Chin Soc Corros Prot, 2000; 20: 1
(杨怀玉, 陈家坚, 曹楚南, 曹殿珍. 中国腐蚀与防护学报, 2000; 20: 1)
[9] Gupta D V S.  Corrosion, 1981; 37: 611
[10] Yang H Y, Chen J J, Cao C N, Cao D Z.  Chin Soc Crros Prot, 2000; 20: 97
(杨怀玉, 陈家坚, 曹楚南, 曹殿珍, 中国腐蚀与防护学报, 2000; 20: 97)
[11] Salvarezza R C, Videla H A, Arvia A J.  Corros Sci, 1982; 22: 815
[12] Vera J, Kapusta S, Hackerman N J.  Electrochem Soc, 1986; 133: 461
[13] Liu L W, Hu Q, Guo F.  Chin Soc Corros Prot, 2002; 22: 22
(刘烈炜, 胡倩, 郭. 中国腐蚀与防护学报, 2002; 22: 22)
[14] Ramanarayanan T A, Smith S N.  Corrosion, 1990; 43: 4001
[15] Ma Q, Zhang W, Ye T X, Wu D Y.  Mater Prot, 2012; 45(3): 27
(马琦, 张玮, 叶童, 吴东阳. 材料保护, 2012; 45(3): 27)
[16] Domizzi G, Anteri G, Ovejiero-Garcia J.  Corros Sci, 2001; 9: 326
[17] Huang S L, Zhang J X, Chen Z Q, Xu K.  Weld Technol, 2004; 33: 8
(黄嗣罗, 张建勋, 陈宗强, 徐楷. 焊接技术, 2004; 33: 8)
[18] Zhang X Y, Du Y L, Zheng L Q.  Mater Prot, 1998; 31(1): 3
(张学元, 杜元龙, 郑立群. 材料保护, 1998; 31(1): 3)
[19] Rocchini G A.  Corrosion, 1987; 6: 624
[20] Panossian Z, Almeida N L, Raquel Maria F.  Corros Sci, 2012; 58: 1
[21] Smanio V, Kitte J, Fregonese M, Cassagne T, Normand B, Ropital F. Corros Sci, 2011; 67: 1
[22] Liu Z Y, Li M, Li X G.  Chin Soc Corros Prot, 2006; 26: 360
(刘智勇, 李明, 李晓刚. 中国腐蚀与防护学报, 2006; 26: 360)
[23] Huang H H, Tsai W T, Lee J T.  Mater Sci Eng, 1994; A188: 219
[24] Huang H H, Lee J T, Tsai W T.  Mater Chem Phys, 1999; 58: 177
[25] Qiao L, Mao X.  Acta Metall Mater, 1995; 43: 4001
[26] Nicholas M M, Seefeldt R.  Electrochim Acta, 2004; 49: 4303
[27] Suh M S, Park C J, Kwon H S.  Surf Coat Technol, 2006; 200: 3527
[28] Hong J H, Lee S H, Kim J G.  Corros Sci, 2012; 54: 174
[29] Chen Y Y, Liu Y M, Shih H C.  Mater Sci Eng, 2005; A407: 114
[30] Srinivasan P B, Sharkawy S W, Dietzel W.  Mater Sci Eng, 2004; A385: 6
[31] Liu Z Y, Li X G, Du C W, Zhai G L, Cheng Y F.  Corros Sci, 2008; 50: 2251
[32] Torres-Islas A, Gonzalez-Rodriguez J G, Uruchurtu J, Serna S.  Corros Sci, 2008; 50: 2831
[33] Torres-Islasa A, Salinas-Bravob V M, Albarranc J L, Gonzalez-Rodriguezd J G.  Int J Hydrogen Energy, 2005; 30: 1317
[34] Uraguchi D, Terada M.  J Am Chem Soc, 2004; 126: 5356
[35] Xiong J P, Chen W J, Qu J S, Lv H Y.  J Xihua Univ (Nat Sci), 2011; 30: 85
(熊建平, 陈文静, 屈金山, 吕华勇. 西华大学学报(自然科学版), 2011; 30: 85)
[36] Li M, Li X G, Cheng G, Liu Z Y.  J Univ Sci Technol Beijing, 2007; 29: 282
(李明, 李晓刚, 陈钢, 刘智勇. 北京科技大学学报, 2007; 29: 282)
[37] Tanga J W, Shao Y, Guo J.  Corros Sci, 2011; 53: 1715
[38] Tanga J W, Shao Y, Guo J.  Corros Sci, 2010; 52: 2050
[39] Zhao M C, Shan Y Y, Li Y M, Yang K.  Acta Metall Sin, 2001; 37: 1087

(赵明纯, 单以银, 李玉梅, 杨柯. 金属学报, 2001; 37: 1087)

[1] Maocheng YAN,Shuang YANG,Jin XU,Cheng SUN,Tangqing WU,Changkun YU,Wei KE. STRESS CORROSION CRACKING OF X80 PIPELINE STEEL AT COATING DEFECT IN ACIDIC SOIL[J]. 金属学报, 2016, 52(9): 1133-1141.
[2] Ju KANG,Jichao LI,Zhicao FENG,Guisheng ZOU,Guoqing WANG,Aiping WU. INVESTIGATION ON MECHANICAL AND STRESS CORROSION CRACKING PROPERTIES OF WEAKNESS ZONE IN FRICTION STIR WELDED 2219-T8 Al ALLOY[J]. 金属学报, 2016, 52(1): 60-70.
[3] YAN Maocheng, WANG Jianqiu, HAN En-hou, SUN Cheng, KE Wei. CHARACTERISTICS AND EVOLUTION OF THIN LAYER ELECTROLYTE ON PIPELINE STEEL UNDER CATHODIC PROTECTION SHIELDING DISBONDED COATING[J]. 金属学报, 2014, 50(9): 1137-1145.
[4] LIU Zhiyong WANG Changpeng DU Cuiwei LI Xiaogang. EFFECT OF APPLIED POTENTIALS ON STRESS CORROSION CRACKING OF X80 PIPELINE STEEL IN SIMULATED YINGTAN SOIL SOLUTION[J]. 金属学报, 2011, 47(11): 1434-1439.
[5] DAN Tichun LU Zhanpeng WANG Jianqiu HAN Enhou SHOJI Testuo KE Wei. CRACK GROWTH BEHAVIOR FOR STRESS CORROSION CRACKING OF 690 ALLOY IN HIGH TEMPERATURE WATER[J]. 金属学报, 2010, 46(10): 1267-1274.
[6] CHEN Liangshan; ZHAO Tiemin ;SI Zhongyao (Institute of Metal Research;Chinese Academy of Sciences; Shenyang)(Manuscript received 18 November;1993; in revised form 21 January;1994). EFFECT OF REFLECTED TENSION SHOCK WAVE ON MICROSTRUCTURE AND FATIGUE PROPERTY OF 16Mn STEEL WELD[J]. 金属学报, 1994, 30(23): 519-523.
No Suggested Reading articles found!