Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (4): 403-409    DOI: 10.3724/SP.J.1037.2010.00519
论文 Current Issue | Archive | Adv Search |
FORMATION AND EVOLUTION OF THE NON-DENDRITIC MORPHOLOGY IN UNDERCOOLING MELT WITH LOWER SHEARING RATE
ZHAO Lining, LIN Xin, HUANG Weidong
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
Cite this article: 

ZHAO Lining LIN Xin HUANG Weidong. FORMATION AND EVOLUTION OF THE NON-DENDRITIC MORPHOLOGY IN UNDERCOOLING MELT WITH LOWER SHEARING RATE. Acta Metall Sin, 2011, 47(4): 403-409.

Download:  PDF(964KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  With the development of the semisolid metal processing technology, many efforts have been made to understand the relationship of the microstructural evolution with the shear rate and the melt undercooling. The globular and rosette microstructures can be obtained under the different shearing rates and melt undercooling. Since the microstructure evolves rapidly under the general high shearing rate in the previous researches, it is difficult to reveal the formation process of semisolid microstructure in detail. In this work, the evolutions of globular and rosette crystals were studies by using a transparent organic alloy Succinonitrile-5%H2O (molar fraction) with a small shearing rate. It is found that there is a critical value of the shearing rate in the semisolid process above which the morphology of the globular crystal could be stable and below which it would be destabilized to form equiaxed dendrite. In addition, when the interface lost the stability, the globular crystals will evolve to dendrite under a higher melt undercooling and to rosette under a lower undercooling. The continuous splitting of the tip of the perturbation cells in the globular crystal induces the formation of the rosette morphology.
Key words:  semisolid      globular crystal      dendritic crystal      rosette crystal      morphological stability     
Received:  06 October 2010     
ZTFLH: 

TG244

 
Fund: 

Supported by National Natural Science Foundation of China (No.50771083) and Fund of the State Key Laboratory of Solidification Processing (NWPU) (No.02-TZ-2008)

About author:  HUANG Weidong

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00519     OR     https://www.ams.org.cn/EN/Y2011/V47/I4/403

[1] Spencer D B, Mehrabian R, Flemings M C. Metall Trans, 1972; 3A: 1925 [2] Flemings M C. Metall Trans, 1991; 22B: 957

[3] Vogel R A, Cantor B. J Cryst Growth, 1977; 37: 309

[4] Vogel A, Doherty R D, Cantor B. Proc Conf on Solidification and Casting of Metals, Sheffield, 1977, London: Metal Society, 1977: 518

[5] Vogel A. Met Sci, 1978; 12: 576

[6] Molenaar J M M, Salemans F W H C, Katgerman L. J Mater Sci, 1985; 20: 4335

[7] Doherty R D. Met Sci, 1982; 16: 1

[8] Mullis A M. Acta Mater, 1999; 47: 1783

[9] Ji S, Fan Z. Metall Mater Trans, 2002; 33A: 3511

[10] Li T, Huang W D, Lin X. Chin J Nonferrous Met, 2000; 10: 635

(李涛, 黄卫东, 林 鑫. 中国有色金属学报, 2000; 10: 635)

[11] Lin X, Li T, Huang W D. Solid State Phenom, 2006; 16–17: 155

[12] Li T, Lin X, Huang W D. Acta Mater, 2006; 54: 481

[13] Ji S, Fan Z, Bevis M J. Mater Sci Eng, 2001; A299: 210

[14] Martinez R A, Flemings M C. Metall Mater Trans, 2005; 36A: 2205

[15] Li T. PhD Thesis, Northwestern Polytechnical Universty, Xi’an, 2003

(李涛. 西北工业大学博士学位论文. 西安, 2003)

[16] Bian X F, Wang W M, Li H, Ma J J. The Melt Structure of Metal. Shanghai: ShangHai Jiao Tong University Press, 2003: 39

(边秀房, 王伟民, 李 辉, 马家骥. 金属熔体结构. 上海: 上海交通大学出版社, 2003: 39)

[17] Min N B. The Physical Fundamental of Crystal Growth. Shanghai: Shanghai Science and Technology Press, 1981: 226

(闵乃本. 晶体生长的物理基础. 上海: 上海科学技术出版社, 1981: 226)
[1] Zheng LIU, Zhiping CHEN, Tao CHEN. Effects of Crucible Size and Electromagnetic Frequency on Flow During Fabrication of Semisolid A356 Al Alloy Slurry[J]. 金属学报, 2018, 54(3): 435-442.
[2] Zheng LIU,Jiayi ZHANG,Haolin LUO,Keyue DENG. RESEARCH ON MORPHOLOGY EVOLUTION OF PRIMARY PHASE IN SEMISOLID A356 ALLOY UNDER CHAOTIC ADVECTION[J]. 金属学报, 2016, 52(2): 177-183.
[3] LIU Zheng, LIU Xiaomei, ZHU Tao, CHEN Qingchun. EFFECTS OF ELECTROMAGNETIC STIRRING WITH LOW CURRENT FREQUENCY ON RE DISTRIBUTION IN SEMISOLID ALUMINUM ALLOY[J]. 金属学报, 2015, 51(3): 272-280.
[4] GUAN Renguo ZHANG Qiusheng DAI Chunguang ZHAO Zhanyong LIU Chunming. SIMULATION AND OPTIMIZATION OF THERMAL FIELD DURING CONTINUOUS CONSTRAINED RHEO-ROLLING OF AZ31 ALLOY[J]. 金属学报, 2011, 47(9): 1167-1173.
[5] HUANG Hongqian CAO Furong GUAN Renguo ZHAO Zhanyong XING Zhenhuan. MATHEMATICAL MODEL AND THEORETICAL RESEARCH OF UNIT ROLLING PRESSURE DISTRIBUTION IN RECTANGULAR GROOVE DURING RHEO–ROLLING OF SEMISOLID ALLOY[J]. 金属学报, 2011, 47(3): 291-297.
[6] LIN Xiaoping DONG Yun XU Rui SUN Guifang JIAO Shihui. CRYSTAL MORPHOLOGIES AND THE PHASES IN THE Mg–6Zn–3Y ALLOY SOLIDIFIED UNDER SUPER–HIGH PRESSURE[J]. 金属学报, 2011, 47(12): 1550-1554.
[7] TONG Leilei LIN Xin ZHAO Lining HUANG Weidong. MORPHOLOGICAL STABILITY OF GLOBULAR CRYSTAL DURING SEMI--SOLID PROCESSING[J]. 金属学报, 2009, 45(6): 737-743.
[8] ZHAO Junwen WU Shusen WAN Li CHEN Qihua AN Ping. EVOLUTION OF MICROSTRUCTURE OF SEMISOLID METAL SLURRY IN ULTRASOUND FIELD[J]. 金属学报, 2009, 45(3): 314-319.
[9] . Enhanced plasticity of bulk metallic glass composite containing as-cast in situ formed ductile phase dendrite dispersions[J]. 金属学报, 2006, 42(3): 331-336 .
[10] CHEN Xiaoyang;MAO Weimin;ZHONG Xuegou (Institute of Casting; University of Science and Technology Beliing; Beijing 100083). RHEOLOGICAL MECHANICS MODEL OF SHEAR RATE THICKENING THE BEHMIOR OF SEMISOLID SLURRISS[J]. 金属学报, 1998, 34(2): 179-183.
No Suggested Reading articles found!