Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (9): 1035-1041    DOI:
论文 Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND SOLID/LIQUID INTERFACE MORPHOLOGY EVOLUTION OF INTEGRALLY DIRECTIONALLY SOLIDIFIED Nb--SILICIDE--BASED ULTRAHIGH TEMPERATURE ALLOY
HE Yongsheng; GUO Xiping; GUO Haisheng; SUN Zhiping
State Key Laboratory of Solidification Processing; Northwestern Polytechnical University; Xi'an 710072
Cite this article: 

HE Yongsheng GUO Xiping GUO Haisheng SUN Zhiping. MICROSTRUCTURE AND SOLID/LIQUID INTERFACE MORPHOLOGY EVOLUTION OF INTEGRALLY DIRECTIONALLY SOLIDIFIED Nb--SILICIDE--BASED ULTRAHIGH TEMPERATURE ALLOY. Acta Metall Sin, 2009, 45(9): 1035-1041.

Download:  PDF(1474KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nb-silicide-based ultrahigh temperature alloys have attracted considerable attentions as potential high temperature structural materials because of their high melting point, suitable density, good elevated temperature creep strength and acceptable room temperature fracture toughness. However, the shortcoming in both high temperature strength and high temperature oxidation resistance retarded their practical applications. Directional solidification and alloying can be used in overcoming these deficiencies at certain degree. In this paper, the alloy with the composition of Nb-22Ti-16Si-6Cr-4Hf-3Al-3Mo-2B-0.06Y (atomic fraction, %) was designed and the master alloy ingot was prepared by firstly vacuum non-consumable arc melting and then vacuum consumable arc melting. The integrally directional solidification of this alloy was conducted with the use of special ceramic crucibles in a self-made resistance heating directional solidification furnace with ultrahigh temperatures and high thermal gradients. The microstructure and solid/liquid (S/L) interface morphology evolution of directionally solidified alloy were investigated under the condition of different melt superheat temperatures θs (1950, 2000, 2050, 2100 and 2150 ℃) but with a constant withdrawing rate of\linebreak 15 μm/s. The results revealed that when the melt superheat temperature  θs=1950 ℃, the directionally solidified microstructure is composed of straight primary Nbss dendrites and couple grown lamellar (Nbss+γ-(Nb, X)5Si3) eutectic colonies (petal--like) along the longitudinal axes of the specimens. When  θs=2000 and 2050 ℃ respectively, the directionally solidified microstructure is completely composed of straight petal-like eutectic colonies. As  θs increased to 2100 and 2150 ℃ respectively, the directionally solidified microstructure evolves into straight coarse primary Nbss dendrites and fine lamellar eutectic colonies along the longitudinal axes of the specimens. The S/L interface morphology changes from coarse dendrite to cellular, then to coarse dendrite with the increase of melt superheat temperature.

Key words:  Nb-silicide      ultrahigh temperature alloy      melt superheat temperature      directionally solidified microstructure      solid/liquid interface morphology     
Received:  26 February 2009     
ZTFLH: 

TG146.4

 
Fund: 

Supported by National Natural Science Foundation of China (No.50671081) and Fund of State KeyLaboratory of Solidification Processing in NWPU (No.07-TP-2008)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I9/1035

[1] Loria E A. JOM, 1987; 39(7): 22
[2] Yen B K, Aizawa T, Kihara J. Mater Sci Eng, 1996; A220: 8
[3] Vasudevan A K, Petrovic J J. Mater Sci Eng, 1992; A155: 1
[4] Guo X P, Gao L M. J Aeronaut Mater, 2006; 26(3): 47
(郭喜平, 高丽梅. 航空材料学报, 2006; 26(3): 47)

[5] Yao C F, Guo X P, Guo H S. Acta Metall Sin, 2008; 44: 579
(姚成方, 郭喜平, 郭海生. 金属学报, 2008; 44: 579)

[6] Kolotukhin E V, Baum B A, Kuleshova E A, Larionov V N, Tret’yakova E E, Tyaqunov G V. Stal’, 1992; (7): 21
(Koabcdefghi, jkdljm, ndaopbqkim, rksfb btjÆ, usovwxbqkii, uwyd bqzj. {ckat, 1992; (7): 21)
[7] Zhao J C, Bewlay B P, Jackson M R, Peluso L A. In: Hemker K J, Dimiduk D M, Clemens H, Darollia R, Inui H, Larsen J M, Sikka V K, Thomas M, Whittenberger J D, eds., Proc Int Symposium on Structural Intermetallics, Warrendale: TMS, 2001: 483
[8] Zhou Y H, Hu Z Q, Jie W Q. Solidification Processing. Beijing: China Machine Press, 1998: 155
(周尧和, 胡壮麒, 介万奇. 凝固技术. 北京: 机械工业出版社, 1998: 155)

[9] Chen G, Yu J W, Sun Y C, Fu H Z. Chin J Mater Res, 1999; 13: 497
(陈光, 俞建威, 孙彦臣, 傅恒志. 材料研究学报, 1999; 13: 497)

[10] Chen C L, Lu F Y. Acta Metall Sin, 1997; 33: 455
(陈长乐, 陆福一. 金属学报, 1997; 33: 455)
[11] Mao X M, Fu H Z, Shi Z X, Liu H M. Acta Metall Sin, 1983; 19: A244
(毛协民, 傅恒志, 史正兴, 刘慧铭. 金属学报, 1983; 19: A244)
[12] Geng X G, Chen G, Fu H Z. Acta Metall Sin, 2002; 38 : 225
(耿兴国, 陈光, 傅恒志. 金属学报, 2002; 38: 225)

[13] Xing L Q, Zhao D Q, Chen X C. J Mater Sci, 1993; 28: 2733

[1] Xuan LI, Xiping GUO, Yanqiang QIAO. MICROSTRUCTURE AND OXIDATION BEHAVIOR OF ZrSi2-NbSi2 MULTILAYER COATINGS ON AN Nb-Ti-Si-Cr BASE ULTRAHIGH TEMPERATURE ALLOY[J]. 金属学报, 2015, 51(6): 693-700.
[2] LI Xiaofei, GUO Xiping. EUTECTIC MICROSTRUCTURE EVOLUTION OF DIRECTIONALLY SOLIDIFIED Nb-Ti-Si BASE ULTRAHIGH TEMPERATURE ALLOY[J]. 金属学报, 2013, 49(7): 853-862.
[3] YANG Lingxiao, GUO Xiping, QIAO Yanqiang, PAN Ruobing. FORMATION OF Ge-Y MODIFIED SILICIDE COATINGS ON Nb-Ti-Si BASE ULTRAHIGH TEMPERATURE ALLOY[J]. 金属学报, 2013, 49(11): 1433-1438.
[4] LI Xuan GUO Xiping. EFFECTS OF ACTIVATORS ON FORMATION OF Si-Zr-Y CO-DEPOSITION COATINGS ON Nb-Ti-Si-Cr BASE ULTRAHIGH TEMPERATURE ALLOY[J]. 金属学报, 2012, 48(11): 1394-1402.
[5] ZHANG Ping GUO Xiping. EFFECTS OF Al ON Si-Al-Y2O3 CO-DEPOSITION COATINGS ON Nb-Ti-Si BASE ULTRAHIGH TEMPERATURE ALLOY[J]. 金属学报, 2010, 46(7): 821-831.
[6] WANG Yong GUO Xiping. EFFECT OF SOLIDIFYING RATE ON INTEGRALLY DIRECTIONALLY SOLIDIFIED MICROSTRUCTURE AND SOLID/LIQUID INTERFACE MORPHOLOGY OF AN Nb–Ti–Si BASE ALLOY[J]. 金属学报, 2010, 46(4): 506-512.
No Suggested Reading articles found!