Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (4): 506-512    DOI: 10.3724/SP.J.1037.2009.00696
论文 Current Issue | Archive | Adv Search |
EFFECT OF SOLIDIFYING RATE ON INTEGRALLY DIRECTIONALLY SOLIDIFIED MICROSTRUCTURE AND SOLID/LIQUID INTERFACE MORPHOLOGY OF AN Nb–Ti–Si BASE ALLOY
WANG Yong; GUO Xiping
State Key Laboratory of Solidification Processing; Northwestern Polytechnical University; Xi’an 710072
Cite this article: 

WANG Yong GUO Xiping. EFFECT OF SOLIDIFYING RATE ON INTEGRALLY DIRECTIONALLY SOLIDIFIED MICROSTRUCTURE AND SOLID/LIQUID INTERFACE MORPHOLOGY OF AN Nb–Ti–Si BASE ALLOY. Acta Metall Sin, 2010, 46(4): 506-512.

Download:  PDF(4027KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Since temperatures of airfoil surfaces in advanced turbine engines are approaching the limit of nickel base superalloys, Nb–Ti–Si base alloys as their potential materials have attracted much attention recently. Nb–Ti–Si base alloys have high melting temperature, suitable densities, good
elevated temperature creep strength and acceptable room temperature fracture toughness, therefore, they are expected to be employed in the temperature range of 1200—1450 ℃as structural materials. Alloying and directional solidification are generally used to obtain a better combination of room temperaure fracture toughness with high temperature creep strength and oxidation resistance for an elevated–temperature alloy. In this paper, the master alloy ingot with a nominal composition of Nb–20Ti–16Si–6Cr–5Hf–4Al–2B–0.06Y (atomic fraction, %) was prepared by using vacuum consumable arc–melting. The integrally directional solidification of this alloy was conducted in a high vacuum and ultrahigh temperature directional solidification furnace with the use of a ceramic crucible at melt temperature of 2050. The integrally directionally solidified microstructure, preferred orientation of constituent phases and solid/liquid (S/L) interface morphology at different solidifying rate (2.5, 5, 10, 20, 50 and 100 μm/s) for this alloy have been investigated by XRD, SEM and EDS, and the growth mechanism of Nbss/(Nb, X)5Si3 (where Nbss denotes Nb solid solution, X represents Ti, Hf and Cr elements) eutectic in it has been discussed. The results show that the directionally solidified microstructure of the alloy is mainly composed of hexagonally cross–sectioned primary (Nb, X)5Si3 columns and coupled grown lamellar Nbss/(Nb, X)5Si3 eutectic colonies both aligned straight and uprightly along the growth direction. When the solidifying rate varies from 2.5 μm/s to 100 μm/s, the
solid/liqid interface of the alloy undergoes an evolution from coarse cellular, fine cellulaand finally to cellular dendrite morphologies. Both the average diameter of eutectic cells and lamellar spacing in hem decrease with the increase in solidifying rate. The formatin of a regular bss/(Nb, X)5Si3 euecic morphology is attributable to a large kinetic undercoling and a low fusion entropies of alloy phases.

Key words:  Nb-Ti-Si base alloy      solidifying rate      integrally directional solidification      regular eutectic microstructure      solid/liquid interface morphology     
Received:  21 October 2009     
Fund: 

Supported by National Natural Science Foundation of China (No.50671081) and the Research Fund of the State Key Laboratory of Solidification Processing (NWPU, China) (No.07–TP–2008)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2009.00696     OR     https://www.ams.org.cn/EN/Y2010/V46/I4/506

[1] Bewlay B P, Jackson M R, Zhao J C, Subramanian P R. Metall Mater Trans, 2003; 34A: 2043 [2] Bewlay B P, Jackson M R, Zhao J C, Subramanian P R, Mendiratta M G, Lewandowski J J. MRS Bull, 2003; 28:646 [3] Radhakrishnan R, Bhaduri S, Henager Jr C H. JOM, 1997; 49(1): 41 [4] Li Z, Peng L M. Acta Mater, 2007; 55: 6573 [5] Guo X P, Guo H S, Yao C F, Guan P. Int J Mod Phys,2009; 23B: 1093 [6] Guan P, Guo X P, Ding X, Zhang J, Gao L M, Kusabiraki K. Acta Metall Sin (Engl Lett), 2004; 17: 450 [7] Geng J, Tsakiropoulos P, Shao G. Intermetallics, 2006; 14: 227 [8] Fu H Z, Wei B B, Guo J J. Eng Sci, 2003; 8(5): 1 (傅恒志, 魏炳波, 郭景杰. 中国工程科学, 2003; 8(5): 1) [9] Guo X P, Gao L M, Guan P, Kusabiraki K, Fu H Z. Mater Sci Forum, 2007; 539–543: 3690 [10] Kang Y W, Qu S Y, Song J X, Han Y F. Acta Metall Sin, 2008; 44: 593 (康永旺, 曲士昱, 宋尽霞, 韩雅芳. 金属学报, 2008; 44: 593) [11] Geng J, Tsakiropoulos P. Intermetallics, 2007; 15: 382 [12] Zelenitsas K, Tsakiropoulos P. Intermetallics, 2005; 13: 1079 [13] Li S M, Ma B L, Li X L, Liu L, Fu H Z. Sci China, 2005; 35E: 479 (李双明, 马伯乐, 李晓历, 刘 林, 傅恒志. 中国科学, 2005; 35E: 479) [14] Elliott R. Eutectic Solidification Processing of Crystalline and Glassy Alloys. London: Butterworths & Co. Ltd., 1983: 92 [15] Ye D L, Hu J H. Thermochemical Data Manual of Practical Mineral Inorganic Substance. 2nd Ed., Beijing: China Metallurgy Press, 2002: 676 (叶大伦, 胡建华. 实用无机物热力学数据手册. 第2版, 北京: 冶金工业出版社, 2002: 676) [16] Fu H Z, Guo J J, Liu L, Li J S. Directional Solidification and Processing of Advanced Materials. Beijing: Science Press, 2008: 29 (傅恒志, 郭景杰, 刘林, 李金山. 先进材料定向凝固. 北京: 科学出版社, 2008: 29) [17] Dynys F W, Sayir A. J Eur Ceram Soc, 2005; 25: 1293 [18] Hu H Q. Fundamental of Metallic Solidification. 2nd Ed., Beijing: China Machine Press, 2000: 124, 228 (胡汉起. 金属凝固原理. 第2版, 北京: 机械工业出版社, 2000: 124, 228) [19] Zhou Y H, Hu Z Q, Jie W Q. Solidification Processing. Beijing: China Machine Press, 1998: 158 (周尧和, 胡壮麒, 介万奇. 凝固技术. 北京: 机械工业出版社, 1998: 158)
No Suggested Reading articles found!