Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (7): 821-831    DOI: 10.3724/SP.J.1037.2010.00044
论文 Current Issue | Archive | Adv Search |
EFFECTS OF Al ON Si-Al-Y2O3 CO-DEPOSITION COATINGS ON Nb-Ti-Si BASE ULTRAHIGH TEMPERATURE ALLOY
ZHANG Ping, GUO Xiping
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
Cite this article: 

ZHANG Ping GUO Xiping. EFFECTS OF Al ON Si-Al-Y2O3 CO-DEPOSITION COATINGS ON Nb-Ti-Si BASE ULTRAHIGH TEMPERATURE ALLOY. Acta Metall Sin, 2010, 46(7): 821-831.

Download:  PDF(1680KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Si-Al-Y2O3 co-deposition coatings on an Nb-Ti-Si base ultrahigh temperature alloy were prepared by pack cementation processes at 1050℃. The effects of Al content (mass fraction) in pack mixtures on the microstructure and constituent phases of the co-deposition coatings were studied, and the oxidation-resistant performance of the coating was investigated. The results show that all coatings prepared at 1050℃with pack mixtures containing different Al contents have a multiple layer structure, and the inner layers of all coatings are composed of Al3(Nb, X) (X represents Ti, Cr and Hf) and (Cr, Al)2(Nb, Ti) phases. The outer layer of the coating prepared at 1050℃ for 10 h with the pack mixture containing 10% Al is composed of (Nb, X)Si2, and the middle layer is composed of (Nb, X)5Si3. However, the constituent phases change into Al3(Nb, X) and (Nb, X)5Si3 in the middle layer of the coating prepared with the pack mixture containing 15%Al. (Nb, X)3Si5Al2 and (Nb, X)Si2 phases have been detected in the outer layer of the coating prepared with the pack mixture containing 20%Al, and Al3(Nb, X) is the main phase constituent in its middle layer with dispersed (Nb, X)5Si3 particles in it. EDS analysis reveals that the distribution of Y in the coatings is not uniform, with its content increasing with the rising of Al content in the pack mixtures. Co-deposition of Al and Si occurs in a sequential manner during the deposition process and the growth of the coatings obeys a parabolic kinetics. After oxidation at 1250℃ for 5 h, dense Al2O3 scales have formed on the coatings, which prevent the oxygen from diffusion into the substrate effectively.

Key words:  Nb-Ti-Si base ultrahigh temperature alloy      Si-Al-Y2O3 co-deposition coating      sequential deposition      multiple layer structure      oxidation-resistant performance     
Received:  24 January 2010     
Fund: 

Supported by National Natural Science Foundation of China (No.50871087) and Fund of State Key Laboratory of Solidification Processing in NWPU (No.07-TP-2008)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00044     OR     https://www.ams.org.cn/EN/Y2010/V46/I7/821

[1] Bewlay B P, Jackson M R, Zhao J C, Subramaniam P R. Metall Mater Trans, 2003; 34A: 2043
[2] Qu S Y, Han Y F, Song L G. Mater Sci Forum, 2005; 475–479: 737
[3] Subramaniam P R , Mendiratta MG, Dimiduk D M. JOM, 1996; 48: 33
[4] Guo J M, Guo X P, Song S G. Acta Metall Sin, 2008; 44: 574
(郭金明, 郭喜平, 宋曙光. 金属学报, 2008; 44: 574)
[5] Cockeram B V. Surf Coat Technol, 1995; 76: 20
[6] Tian X D, Guo X P. Acta Metall Sin, 2008; 44: 585
(田晓东, 郭喜平. 金属学报, 2008; 44: 585)
[7] Grabke H J, Steinhorst M, Brumm M, Wiemer D. Oxid Met, 1991; 35(3–4): 199
[8] Chow T P, Hamzeh K, Steckl A J. J Appl Phys, 1983; 54: 2716
[9] Xiang Z D, Rose S R, Datta P K. Mater Sci Eng, 2003; A356: 181
[10] Swadzba L, Maciejny A, Mendala B, Moskal G, Jarczyk G. Surf Coat Technol, 2003; 165: 273
[11] Zhou W, Zhao Y G, Li W, Tian B, Hu S W, Qin Q D. Mater Sci Eng, 2007; A458: 34
[12] Bianco R, Rapp R A, Jacobson N S. Oxid Met, 1992; 38(12): 33
[13] Tian X D, Guo X P. Surf Coat Technol, 2009; 203: 1161
[14] Qi T, Guo X P. J Inorg Mater, 2009; 24: 1219
(齐涛, 郭喜平. 无机材料学报, 2009; 24: 1219)
[15] Wang Y, Guo X P. Acta Metall Sin, 2010; 46: 506
(王勇, 郭喜平. 金属学报, 2010; 46: 506)
[16] Zhao J C, Peluso L A, Jackson M R, Tan L Z. J Alloys Compd, 2003; 360: 183
[17] Hellwig A, Palm M, Inden G. Intermetallics, 1998; 6: 79
[18] Zhao J C, Jackson M R, Peluso L A. J Phase Equilib Diffus, 2004; 25: 152
[19] Mahdouk K, Gachon J C. J Alloys Compd, 2001; 321: 232
[20] Zhou Y B, Chen H, Zhang H, Wang Y. Vacuum, 2008; 82: 748
[21] Pratheesh G, Parida S C, Reddy R G. Metall Mater Trans, 2007; 38B: 85
[22] Fernandes P B, Coelho G C, Ferreira F, Nunes C A, Sundman B. Intermetallics, 2002; 10: 993
[23] Zhao J C, Jackson M R, Peluso L A. Mater Sci Eng, 2004; A372: 21
[24] Majumdar S, Sengupta P, Kale G B. Surf Coat Technol, 2006; 200: 3713
[25] Murakami T, Sasaki S, Ichikawa K, Kitahara A. Intermetallics, 2001; 9: 621
[26] An T F, Guan H R, Sun X F, Hu Z Q. Oxid Met, 2000; 54(3–4): 301

[1] Xuan LI, Xiping GUO, Yanqiang QIAO. MICROSTRUCTURE AND OXIDATION BEHAVIOR OF ZrSi2-NbSi2 MULTILAYER COATINGS ON AN Nb-Ti-Si-Cr BASE ULTRAHIGH TEMPERATURE ALLOY[J]. 金属学报, 2015, 51(6): 693-700.
[2] LI Xiaofei, GUO Xiping. EUTECTIC MICROSTRUCTURE EVOLUTION OF DIRECTIONALLY SOLIDIFIED Nb-Ti-Si BASE ULTRAHIGH TEMPERATURE ALLOY[J]. 金属学报, 2013, 49(7): 853-862.
[3] YANG Lingxiao, GUO Xiping, QIAO Yanqiang, PAN Ruobing. FORMATION OF Ge-Y MODIFIED SILICIDE COATINGS ON Nb-Ti-Si BASE ULTRAHIGH TEMPERATURE ALLOY[J]. 金属学报, 2013, 49(11): 1433-1438.
No Suggested Reading articles found!