Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (11): 1390-1395    DOI:
论文 Current Issue | Archive | Adv Search |
STUDY ON THE CLUSTER--BASED MODEL OF Ni30Cu70 SOLID SOLUTION WITH Fe AND Mn AND ITS CORROSION RESISTANCE
ZHANG Jie; WANG Qing; WANG Yingmin; DONG Chuang
Key Lab of Materials Modification by Laser; Ion and Electron Beams of Ministry of Education;
School of Materials Science $\&$ Engineering; Dalian University of Technology; Dalian 116024
Cite this article: 

ZHANG Jie WANG Qing WANG Yingmin DONG Chuang. STUDY ON THE CLUSTER--BASED MODEL OF Ni30Cu70 SOLID SOLUTION WITH Fe AND Mn AND ITS CORROSION RESISTANCE. Acta Metall Sin, 2009, 45(11): 1390-1395.

Download:  PDF(1007KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Minor Fe and Mn additions are necessary to enhance the corrosion resistance of commercial Cu-Ni alloys. The present paper aims at optimizing the addition amounts of Fe and Mn in Cu70Ni30 (atomic fraction, %) alloy using a cluster-based solid solution model. In this model it assumed that one Fe(Mn) atom and twelve Ni atoms formed a cluster consisted of Fe(Mn)-centered and Ni-surrounded cube-octahedron and the limit solid solution would be composed of isolated Fe(Mn)Ni12 clusters embedded in the Cu matrix. The ratio of the Fe(Mn) atoms and its surrounding Ni atoms is 1∶12, and the limit solid solution composition of Fe(Mn)-modified Cu70Ni30 alloy is [M1/13Ni12/13]30Cu70=[(Fe1-xMnx)Ni12]Cu30.3, M=(Fe1-xMnx). The OM, XRD and electrochemical corrosion measurements were used to characterize the microstructure and corrosion resistance performance of [(Fe1-xMnx)Ni12]Cu30.3. The results indicated that the solid solubility limitative alloys [(Fe0.75Mn0.25)Ni12]Cu30.3 has the best corrosion resistance in 3.5%NaCl aqueous solution.

Key words:  Cu-Ni alloy      addition of Fe(Mn)      solid solution model      cluster structure      corrosion-resistance     
Received:  29 April 2009     
ZTFLH: 

TG111

 
  TG146

 
Fund: 

Supported by National Natural Science Foundation of China (Nos.50671018 and 50631010), National Basic Research Program of China (No.2007CB613902) and National High Technology Research and Development Program of China (No. 2007AA05Z102)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I11/1390

[1] Marsden D D. Mater Performance, 1978; 17: 9
[2] Pearson C. Br Corros J. 1972; 7: 61
[3] Wang J H, Jiang X X, Li S Z. Acta Metall Sin, 1995; 6A: 266
(王吉会, 姜晓霞, 李诗卓. 金属学报, 1995; 6A: 266)
[4] Efird K D. Corrosion, 1977; 33: 347
[5] Drolenga L J P, Ijsseling F P, Kolster B H. Mater Corros, 1983; 34: 167
[6] Popplewell J M, Hart R J. Corros Sci, 1973; 13: 295
[7] Bailey G L. J Inst Metals, 1951; 79: 243
[8] Stewart W C, La Que F L. Corrosion, 1952; 8: 259
[9] Zhu X L, Lin L Y, Lei T Q. Acta Metall Sin, 1997; 7: 1256
(朱小龙, 林乐耘, 雷廷权. 金属学报, 1997; 7: 1256)
[10] Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H, Wu J, Xia J H. J Phys, 2007; 40D: R273
[11] Dong C, Chen W R, Wang Y G, Qiang J B, Wang Q, Lei Y, Monique C D, Dubois J M. J Non–Cryst Solids, 2007; 353: 3405
[12] Miracle D B. Acta Mater, 2006; 54: 4317
[13] BraggWL,Williams E J. Proc R Soc London, 1934; 145A: 699
[14] Chakrabarti D J, Laughlin D E. Chen S W, Chang Y A. Binary Alloy Phase Diagrams. Materials Park, OH, ASM International, 1991: 1442
[15] Swartzendruber L J. Phase Diagrams of Binary Iron Alloys. Materials Park, OH, ASM International, 1993: 131
[16] Gupta K P. Indian Inst Metals, 1990; 1: 290
[17] Takeuchi A, Inoue A. Mater Trans JIM, 2000; 41: 1372
[18] Zhang J, Wang Q, Wang Y M, Li C Y, Wen L S, Dong C. J Mater Res, in press

[1] LIU Yongkang, HUANG Haiyou, XIE Jianxin. ANISOTROPIC DEFORMATION BEHAVIOR OF CONTINUOUS COLUMNAR-GRAINED CuNi10Fe1Mn ALLOY[J]. 金属学报, 2015, 51(1): 40-48.
[2] WANG Yanqiu, SHAO Yawei, MENG Guozhe, ZHANG Tao,WANG Fuhui. STUDY ON PASSIVATING TREATMENT OF Cu-Ni ALLOY IN COMPOUND PASSIVANT CONTAINING BENZOTRIAZOLE[J]. 金属学报, 2012, 48(6): 744-748.
[3] Lü Baochen LIU Haitao REN Xin WANG Xiaoliang LI Gang SUN Yuejun. AN ATOM DENSE PACKING MODEL FOR METALLIC GLASS WITH HIGH SOLUTE CONCENTRATION IN (PSEUDO–) TERNARY SYSTEMS[J]. 金属学报, 2012, 48(2): 240-244.
[4] XU Qunjie DENG Xianqin PAN Hongtao YUN Hong. ELECTROCHEMICAL BEHAVIOR OF B30 Cu-Ni ALLOY WITH SUPER-HYDROPHOBIC SURFACE IN 3.5%NaCl SOLUTION[J]. 金属学报, 2012, 48(1): 94-98.
[5] ;. Inhibition Action and Mechanism of the Self-assembled Monolayers of 3-amino-1,2,4-triazole on Cu-Ni Alloy[J]. 金属学报, 2008, 44(2): 203-208 .
[6] XIE Youqing(Department of Materials Science and Engineering; Central South University of Technology; ChangSha 410083)CorrsPondent: XIE Youqing; pwtsson Tel: (O731)8879287; Fax: (0731)8826136Manuscript received 1997-12-1; in revised form 1998-0406. RELATIONSHIP BETWEEN PARTIAL AND AVERAGE ATOMIC VOLUMES OF COMPONENTS IN Cu-Ni ALLOYS[J]. 金属学报, 1998, 34(12): 1243-1248.
[7] DIA O Risheng(Panzhihua Institute of Iron and Steel Research; Panzhihua 617000). DETECTION OF SURFACE TENSION OF TITANIFEROUS SLAG AND ITS RELATION TO ION-CLUSTER STRUCTURE MODEL[J]. 金属学报, 1995, 31(18): 247-250.
No Suggested Reading articles found!