Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (10): 1242-1248    DOI:
论文 Current Issue | Archive | Adv Search |
GRAIN GROWTH MODEL OF INCONEL 718 ALLOY FORGED SLAB IN REHEATING PROCESS PRIOR TO ROUGH ROLLING
CHEN Liqing; SUI Fengli; LIU Xianghua
State Key Laboratory of Rolling and Automation; Northeastern University; Shenyang 110004
Cite this article: 

CHEN Liqing SUI Fengli LIU Xianghua. GRAIN GROWTH MODEL OF INCONEL 718 ALLOY FORGED SLAB IN REHEATING PROCESS PRIOR TO ROUGH ROLLING. Acta Metall Sin, 2009, 45(10): 1242-1248.

Download:  PDF(4410KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Inconel 718 superalloy is extensively used to manufacture critical parts in aeronautical, astronautical, oil and chemical industries due to its excellent mechanical, physical and anti–corrosion behavior. Usually, these parts are shaped by hot forging or rolling in open–train mills.
Recently, the tandem hot rolling has been applied to form superalloy bar products. In some cases, it can replace the traditional rolling, since it has higher productivity and product quality. In order to obtain the most favorable microstructure and the best mechanical properties of Inconel 718 alloy in
tandem hot rolling, it is necessary to control its microstructural evolution in every step of the whole rolling process. With the aid of computer modeling, it is possible to make such a controlling process possible. As the first step in tandem hot rolling, reheating process of a forged slab prior to rough
rolling plays a predominant role in predicting the grain size change or even the microstructural evolution. Thus, in this study, an Inconel 718 alloy forged slab was used as the experimental material and the effects of reheating temperature and holding time on its grain growth were investigated. A
universal model was developed and verified for the grain growth of Inconel 718 alloy forged slab in reheating process prior to rough rolling. With the increase of holding time, the grain size shows no remarkable change up to 1173 K. The grain growth presents a linear trend in the range from 1173 to
1323 K. A parabolic trend of gain growth can be observed when reheating temperature is higher than 1323 KThe established grain growth model of Inconel 718 alloy would be suitable to calculate the grn size evolution under the both isothermal and non–isothermal reheating conditions. This could also provide a basis in formulating the technological parameters for tandem hot rolling of Inconel 718 superalloy.

Key words:  Inconel 718 alloy      grain growth model      reheating prior to rough rolling      isothermal condition      non--isothermal condition     
Received:  22 April 2009     
ZTFLH: 

TG244.3

 
Fund: 

Supported by Key Program of National Natural Science Foundation of China (No.50634030) and Program for New Century Excellent Talents in University (No.06–0285)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I10/1242

[1] Li C G, Fu H Z, Yu Q. Aerospace Materials. Beijing: National Defense Industry Press, 2002: 99
(李成功, 傅恒志, 于翘. 航空航天材料. 北京: 国防工业出版社, 2002: 99)
[2] Sundararaman M, Mukhopadhyay P, Banerjee S. Metall Trans, 1992; 23A: 2015
[3] Thomas A, El–Wahabi M, Cabrera J M, Prado J M. J Mater Process Technol, 2006; 177: 469
[4] Zhuang J Y, Du J H, Deng Q, Qu J L, Lu X D. The Wrought Superalloy GH4169. Beijing: Metallurgical Industry Press, 2006: 61
(庄景云, 杜金辉, 邓 群, 曲敬龙, 吕旭东. 变形高温合金GH4169. 北京: 冶金工业出版社, 2006: 61)
[5] Devadas C, Samarasekera I V, Hawbolt E B. Metall Trans, 1991; 22A: 335
[6] Jr. Siciliano F, Minami K, Maccagno T M, Jonas J J. ISIJ Int, 1996; 36: 1500
[7] Liu Z Y, Xu Y B, Wang G D. Simulation and Prediction of the Microstructural Evolution and Properties for Hot Rolled Steels. Shenyang: Northeastern University Press, 2004: 111
(刘振宇, 许云波, 王国栋. 热轧钢材组织-性能演变的模拟和预测. 沈阳: 东北大学出版社, 2004: 111)
[8] Liu D, Yang Y H, Geng J, Luo Z J. Acta Metall Sin (Engl Lett), 2007; 20: 373
[9] Liu D, Luo Z J. Chin J Nonferrous Met, 2003; 13: 1211
(刘 东, 罗子健. 中国有色金属学报, 2003; 13: 1211)
[10] Zhang J M, Gao Z Y, Zhuang J Y, Zhong Z Y. Metall Mater Trans, 1999; 30A: 2701
[11] Na Y S, Yeom J T, Park N K, Lee J Y. J Mater Process Technol, 2003; 141: 337
[12] Medeiros S C, Prasad Y V R K, Frazier W G, Srinivasan R. Mater Sci Eng, 2000; A293: 198
[13] Zhang J M, Gao Z Y, Zhuang J Y, Zhong Z Y. J Mater Process Technol, 1999; 88: 244
[14] Zhang J M, Gao Z Y, Zhuang J Y, Zhong Z Y. J Mater Process Technol, 2000; 101: 25
[15] Sellars C M, Whiteman J A. Met Sci, 1979; 13: 187
[16] Anelli E. ISIJ Int, 1992; 32: 440

[1] XU Lei, TIAN Xiaosheng, WU Jie, LU Zhengguan, YANG Rui. Microstructure and Mechanical Properties of Inconel 718 Powder Alloy Prepared by Hot Isostatic Pressing[J]. 金属学报, 2023, 59(5): 693-702.
[2] LI Yamin, ZHANG Yaoyao, ZHAO Wang, ZHOU Shengrui, LIU Hongjun. First-Principles Study on the Effect of Cu on Nb Segregation in Inconel 718 Alloy[J]. 金属学报, 2022, 58(2): 241-249.
[3] HAN Ruyang, YANG Gengwei, SUN Xinjun, ZHAO Gang, LIANG Xiaokai, ZHU Xiaoxiang. Austenite Grain Growth Behavior of Vanadium Microalloying Medium Manganese Martensitic Wear-Resistant Steel[J]. 金属学报, 2022, 58(12): 1589-1599.
[4] Yongchang LIU, Hongjun ZHANG, Qianying GUO, Xiaosheng ZHOU, Zongqing MA, Yuan HUANG, Huijun LI. Microstructure Evolution of Inconel 718 Superalloy During Hot Working and Its Recent Development Tendency[J]. 金属学报, 2018, 54(11): 1653-1664.
[5] ZHANG Haiyan ZHANG Shihong CHENG Ming. EVOLUTION OF δ PHASE IN INCONEL 718 ALLOY DURING DELTA PROCESS[J]. 金属学报, 2009, 45(12): 1451-1455.
No Suggested Reading articles found!