Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (1): 73-78    DOI:
论文 Current Issue | Archive | Adv Search |
ANALYSIS OF ROTARY BENDING GIGACYCLE FATIGUE PROPERTIES OF BEARING STEEL GCr15
LU Liantao1; LI Wei 2; ZHANG Jiwang1; SHIOZAWA Kazuaki3; ZHANG Weihua1
1 State Key Laboratory of Traction Power; Southwest Jiaotong University; Chengdu 6l0031
2 School of Mechanical and Electronic Control Engineering; Beijing Jiaotong University; Beijing 100044
3 Department of Mechanical and Intellectual System Engineering; Toyama University; 3190 Gofuku; Toyama 930-8555;  Japan
Cite this article: 

LU Liantao LI Wei ZHANG Jiwang SHIOZAWA Kazuaki ZHANG Weihua. ANALYSIS OF ROTARY BENDING GIGACYCLE FATIGUE PROPERTIES OF BEARING STEEL GCr15. Acta Metall Sin, 2009, 45(1): 73-78.

Download:  PDF(994KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Gigacycle fatigue properties of bearing steel GCr15, were investigated under cantilever-type rotary bending fatigue tests in an open environment at room temperature. S-N data obtained from fatigue test showed continuous gradual decline and large dispersion. These data could not be described by a step wise S-N curve. From the results of fractography, fatigue fracture mainly occurred at surface flaws or an inclusion in the region of high stress amplitude level, whereas it mainly occurred at a subsurface inclusion in the region of low stress amplitude level. Fish-eye marks were always observed around the subsurface inclusions on the fracture surface, and for most subsurface inclusions, a granular bright facet (GBF) area was observed in the vicinity around them. The experimental results were analyzed and showed that a larger scatter of inclusion size and clusters of smaller inclusion particles are key factors influencing the scatter of fatigue life. Influence of inclusion size on the dispersion of fatigue life can be quantitatively analyzed by using the estimated GBF growth rate from the S-N data.

Key words:  gigacycle fatigue      bearing steel GCr15      S-N curve      inclusion      fatigue crack growth rate     
Received:  30 April 2008     
ZTFLH: 

TG111

 
  TG135

 
Fund: 

Supported by National Natural Science Foundation of China (No.50521503),
National Basic Research Program of China (No.2007CB714705), the Cultivation
Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (No.705044)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I1/73

[1] Sakai T, Sato Y, Oguma N. Fatigue Fract Eng Mater Struct, 2002; 25: 765
[2] Furusawa T, Sakai T, Takizawa R, Nakajima M, Shiozawa K, Oguma N, Okada K, Ochi Y, Sugeta A, Kawagoyishi N, Sakaida A, Sakamoto H. Trans Jpn Soc Mech Eng, 2006; 72A(718): 886
(古泽达哉, 酒井达雄,   泽亮平, 中岛正贵, 盐泽和章, 小熊规泰,   田宪司, 越智保雄, 菅田淳, 皮  石纪雄, 境田彰芳, 坂本英俊. 日本机械学会论文集, 2006; 72A(718): 886)
[3] Shiozawa K, Hasegawa T, Lu L T, In: Allison J E, Jones J W, Larsen J M, Ritchie R O, eds., 4th Int Conf on Very High Cycle Fatigue, Warrendale, PA: TMS, 2007: 227
[4] Nishijima S, Kanazawa K. Fatigue Fract Eng Mater Struct, 1999; 22: 601
[5] Sakai T, Takeda M, Shiozawa K, Ochi Y, Nakajima M, Nakamara T, Oguma N. J Soc Mater Sci Jpn, 2000; 49: 779
(酒井达雄, 武田光弘, 盐泽和章, 越智保雄, 中岛正贵, 中村孝, 小熊规泰. 材料, 2000; 49: 779)
[6] Shiozawa K, Lu L T, Ishihara S. Fatigue Fract Eng Mater Struct, 2001; 24: 781
[7] Murakami Y, Yokoyama N, Nagata J. Fatigue Fract Eng Mater Struct, 2002; 25: 735
[8] Zhou C E, Qian G A, Hong Y S. Key Eng Mater, 2006; 325: 1113
[9] Zhang J M, Yang Z G, Li S X, Li G Y, Hui W J, Weng Y Q. Acta Metall Sin, 2006; 42: 259
(张继明, 杨振国, 李守新, 李广义, 惠卫军, 翁宇庆. 金属学报, 2006; 42: 259)
[10] Nie Y H, Hui W J, Fu W T, Weng Y Q, Dong H. Acta Metall Sin, 2007; 43: 1031
(聂义宏, 惠卫军, 傅万堂, 翁宇庆, 董瀚. 金属学报, 2007; 43: 1031)
[11] Lu L T, Shiozawa K, Morii Y, Nishino S. Acta Metall Sin, 2005; 41: 106
(鲁连涛, 盐泽和章, 森井佑一, 西野精一. 金属学报, 2005; 41: 1066)
[12] Murakami Y, Endo M. Int J Fatigue, 1994; 16: 163

[1] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[2] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[3] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[4] SUN Yangting, LI Yiwei, WU Wenbo, JIANG Yiming, LI Jin. Effect of Inclusions on Pitting Corrosion of C70S6 Non-Quenched and Tempered Steel Doped with Ca and Mg[J]. 金属学报, 2022, 58(7): 895-904.
[5] LIU Jie, XU Le, SHI Chao, YANG Shaopeng, HE Xiaofei, WANG Maoqiu, SHI Jie. Effect of Rare Earth Ce on Sulfide Characteristics and Microstructure in Non-Quenched and Tempered Steel[J]. 金属学报, 2022, 58(3): 365-374.
[6] ZHU Miaoyong, DENG Zhiyin. Evolution and Control of Non-Metallic Inclusions in Steel During Secondary Refining Process[J]. 金属学报, 2022, 58(1): 28-44.
[7] TANG Haiyan, LIU Jinwen, WANG Kaimin, XIAO Hong, LI Aiwu, ZHANG Jiaquan. Progress and Perspective of Functioned Continuous Casting Tundish Through Heating and Temperature Control[J]. 金属学报, 2021, 57(10): 1229-1245.
[8] ZHOU Hongwei, BAI Fengmei, YANG Lei, CHEN Yan, FANG Junfei, ZHANG Liqiang, YI Hailong, HE Yizhu. Low-Cycle Fatigue Behavior of 1100 MPa Grade High-Strength Steel[J]. 金属学报, 2020, 56(7): 937-948.
[9] SUN Feilong, GENG Ke, YU Feng, LUO Haiwen. Relationship of Inclusions and Rolling Contact Fatigue Life for Ultra-Clean Bearing Steel[J]. 金属学报, 2020, 56(5): 693-703.
[10] ZHANG Xinfang, YAN Longge. Regulating the Non-Metallic Inclusions by Pulsed Electric Current in Molten Metal[J]. 金属学报, 2020, 56(3): 257-277.
[11] Tongbang AN,Jinshan WEI,Jiguo SHAN,Zhiling TIAN. Influence of Shielding Gas Composition on Microstructure Characteristics of 1000 MPa Grade Deposited Metals[J]. 金属学报, 2019, 55(5): 575-584.
[12] FENG Yefei,ZHOU Xiaoming,ZOU Jinwen,WANG Chaoyuan,TIAN Gaofeng,SONG Xiaojun,ZENG Weihu. Interface Reaction Mechanism Between SiO2 and Matrix and Its Effect on the Deformation Behavior of Inclusionsin Powder Metallurgy Superalloy[J]. 金属学报, 2019, 55(11): 1437-1447.
[13] Yu HUANG, Guoguang CHENG, You XIE. Modification Mechanism of Cerium on the Inclusions in Drill Steel[J]. 金属学报, 2018, 54(9): 1253-1261.
[14] Ge MA, Xiurong ZUO, Liang HONG, Yinglun JI, Junyuan DONG, Huihui WANG. Investigation of Corrosion Behavior of Welded Joint of X70 Pipeline Steel for Deep Sea[J]. 金属学报, 2018, 54(4): 527-536.
[15] Wen YANG,Lifeng ZHANG,Ying REN,Haojian DUAN,Ying ZHANG,Xianghui XIAO. QUANTITATIVE 3D CHARACTERIZATION ON OXIDE INCLUSIONS IN SLAB OF Ti BEARING FERRITIC STAINLESS STEEL USING HIGH RESOLUTION SYNCHROTRON MICRO-CT[J]. 金属学报, 2016, 52(2): 217-223.
No Suggested Reading articles found!