Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (12): 1439-1444    DOI:
论文 Current Issue | Archive | Adv Search |
CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU'ERLE SOIL SOLUTION WITH CO2
ZHANG Liang;LI Xiaogang;DU Cuiwei;LIU Zhiyong;LIANG Ping
Corrosion and Protection Center; University of Science and Technology Beijing; and Key Lab of Corrosion; Erosion and Surface Technique Beijing
Cite this article: 

ZHANG Liang LI Xiaogang DU Cuiwei LIU Zhiyong LIANG Ping. CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU'ERLE SOIL SOLUTION WITH CO2. Acta Metall Sin, 2008, 44(12): 1439-1444.

Download:  PDF(2054KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of CO2 on the stress corrosion cracking (SCC) behavior of X70 pipeline steel in simulated Ku'erle soil solution was investigated by polarization curve, EIS and slow strain rate testing (SSRT). The morphologies of fracture surface of X70 pipeline steel in the solution with the different partial pressures of CO2 were analyzed by SEM. The results show that the dissolved CO2 reacted with the corrosion product of FeCO3 and a dissolved complex (Fe(CO3)2 2-) is formed. The cathodic regime representing evolution of hydrogen is also affected by the presence of dissolved CO2. The SCC of X70 pipeline steel in dissolved CO2 solution follows the mechanism of hydrogen-facilitated dissolution. As the increase of the pressure of CO2 in the solution, the effect of hydrogen induced cracking is enhanced.

Key words:  pipeline steel      CO2      stress corrosion cracking      cathode reaction     
Received:  31 March 2008     
ZTFLH: 

TG172.7

 

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I12/1439

[1]Albarran J L,Aguilar A,Martinez L,Lopez H F.Corro- sion,2002;58:783
[2]Koh S U,Kim J S,Yang B Y,Kim K Y.Corrosion,2004; 60:244
[3]Eadie R L,Szklarz K E,Sutherby R L.Corrosion,2005; 61:167
[4]Zhao M C,Yang K.Scr Mater,2005;52:881
[5]Yu F,Gao K W,Su Y J,Li X,Qiao L J,Chu W Y,Lu M X.Mater Lett,2005;59:1709
[6]Parkins R N,Zhou S.Corros Sci,1997;39:159
[7]Parkins R N,Zhou S.Corros Sci,1997;39:175
[8]Niu L,Cheng Y F.Appl Surf Sci,2007;253:8626
[9]Li M C,Cheng Y F.Electrochim Acta,2007;52:8111
[10]Contreras A,Albiter A,Salazar M,Pérez R.Mater Sci Eng,2005;A407:45
[11]Parkins R N,Beavers J A.Corrosion,2003;59:258
[12]Li M C,Cheng Y F.Electrochim Acta,2008;53:2831
[13]Gu B,Luo J,Mao X.Corrosion,1999;55:96
[14]Gonzalez-Rodriguez J G,Casales M,Salinas-Bravo V M, Albarran J L,Martinez L.Corrosion,2002;58:584
[15]Park J J,Pyun S I,Na K H,Lee S M,Kho Y T.Corrosion, 2002;58:329
[16]Li X G,Du C W,Liu Z Y.Corrosion Behavior and Eex- premential Study of X70.Beijing:Science Press,2006: 13 (李晓刚,杜翠薇,刘智勇.X70管线钢的腐蚀行为与试验研究.北京:科学出版社,2006:13)
[17]Linter B R,Burstein G T.Corros Sci,1999;41:117
[18]Liu X,Mao.X.Scr Metall Mater,1995;33:145
[19]Cheng Y F.J Mater Sci,2007;42:2701
[20]Liu J H,Li D,Liu P Y,Guo B L.J Mater Eng,2005;(2): 30 (刘继华,李荻,刘培英,郭宝兰.材料工程,2005;(2):30)
[1] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[2] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[3] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[4] LI Xueda, LI Chunyu, CAO Ning, LIN Xueqiang, SUN Jianbo. Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel[J]. 金属学报, 2021, 57(8): 967-976.
[5] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[6] CHEN Fang,LI Yadong,YANG Jian,TANG Xiao,LI Yan. Corrosion Behavior of X80 Steel Welded Joint in Simulated Natural Gas Condensate Solutions[J]. 金属学报, 2020, 56(2): 137-147.
[7] Yadong LI,Qiang LI,Xiao TANG,Yan LI. Reconstruction and Characterization of Galvanic Corrosion Behavior of X80 Pipeline Steel Welded Joints[J]. 金属学报, 2019, 55(6): 801-810.
[8] Hongchi MA, Cuiwei DU, Zhiyong LIU, Yong LI, Xiaogang LI. Comparative Study of Stress Corrosion Cracking Behaviors of Typical Microstructures of Weld Heat-Affected Zones of E690 High-Strength Low-Alloy Steel in SO2-Containing Marine Environment[J]. 金属学报, 2019, 55(4): 469-479.
[9] Ping DENG,Chen SUN,Qunjia PENG,En-Hou HAN,Wei KE,Zhijie JIAO. Study on Irradiation Assisted Stress Corrosion Cracking of Nuclear Grade 304 Stainless Steel[J]. 金属学报, 2019, 55(3): 349-361.
[10] Timing ZHANG, Weimin ZHAO, Wei JIANG, Yonglin WANG, Min YANG. Numerical Simulation of Hydrogen Diffusion in X80 Welded Joint Under the Combined Effect of Residual Stress and Microstructure Inhomogeneity[J]. 金属学报, 2019, 55(2): 258-266.
[11] Jun YU, Deping ZHANG, Ruosheng PAN, Zehua DONG. Electrochemical Noise of Stress Corrosion Cracking of P110 Tubing Steel in Sulphur-Containing Downhole Annular Fluid[J]. 金属学报, 2018, 54(10): 1399-1407.
[12] Xianbo SHI, Wei YAN, Wei WANG, Yiyin SHAN, Ke YANG. Hydrogen-Induced Cracking Resistance of Novel Cu-Bearing Pipeline Steels[J]. 金属学报, 2018, 54(10): 1343-1349.
[13] Yun SHU, Maocheng YAN, Yinghua WEI, Fuchun LIU, En-Hou HAN, Wei KE. Characteristics of SRB Biofilm and Microbial Corrosionof X80 Pipeline Steel[J]. 金属学报, 2018, 54(10): 1408-1416.
[14] Hongzhong YUAN,Zhiyong LIU,Xiaogang LI,Cuiwei DU. Influence of Applied Potential on the Stress Corrosion Behavior of X90 Pipeline Steel and Its Weld Joint in Simulated Solution of Near Neutral Soil Environment[J]. 金属学报, 2017, 53(7): 797-807.
[15] Hongxia WAN,Dongdong SONG,Zhiyong LIU,Cuiwei DU,Xiaogang LI. Effect of Alternating Current on Corrosion Behavior of X80 Pipeline Steel in Near-Neutral Environment[J]. 金属学报, 2017, 53(5): 575-582.
No Suggested Reading articles found!