Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (11): 1348-1353     DOI:
论文 Current Issue | Archive | Adv Search |
A TWO-PARAMETER DRIVING FORCE FOR FATIGUE CRACK GROWTH
XIONG Ying
浙江工业大学
Cite this article: 

XIONG Ying. A TWO-PARAMETER DRIVING FORCE FOR FATIGUE CRACK GROWTH. Acta Metall Sin, 2008, 44(11): 1348-1353 .

Download:  PDF(3424KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Most of the previous parameters that utilized as a crack driving force were established in modifying the parameter Kop in Elber’s effective SIF range (ΔKeff =Kmax–Kop). This paper focuses on the physical meaning of compliance changes caused by plastic deformation at the crack tip, the test were carried out under constant amplitude loading by using structural steel, and differences of several parameter ΔKeff from literature were analyzed. The effect of actual stress (load) amplitude at the crack tip on fatigue crack growth is investigated based on these test results, and improved two-parameter driving force model ΔKdrive=(Kmax)n(ΔK^)1-n has been proposed. Experimental data for several different types of materials taken from literature were used in the analyses. Presented results indicate that new parameter ΔKdrive was equally effective or better than ΔK(=Kmax-Kmin), ΔKeff(=Kmax-Kop) and ΔK*(=(Kmax)α(ΔK+)1-α) in correlating and predicting the R-ratio effects on fatigue crack growth rate.

Key words:  Hysteresis loop      Compliance      Fatigue crack growth      Crack tip      Opening/closure      Crack driving force     
Received:  01 February 2008     
ZTFLH: 

TF777.1

 

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I11/1348

[1]Elber W.Damage Tolerance in Aircraft Structures. Philadelphia:ASTM STP 486,1971:230
[2]Nisitani H,Chen D H.Trans Jpn Soc Mech Eng,1985;51: 1436
[3]Donald J K.Int J Fatigue,1999;21:S47
[4]Lang M.Fatigue Fract Eng Mater Struct,2002;23:587
[5]Marci G.Fracture Mechanics.Philadelphia:ASTM STP 677,1979:168
[6]Toyosada M,Niwa T.Int J Fracture,1994;67:217
[7]Donald K,Paris P C.Int J Fatigue,1999;21:S47
[8]Kujawski D.Int J Fatigue,2001;23:S239
[9]Noroozi A H,Glinka G,Lambert S.Int J Fatigue,2005; 27:1277
[10]Kikukawa M,Jono M,Tanaka K,Takatani M.J Soc Mater Sci,1976;25:899
[11]Xiong Y,Katsuta J,Sakiyama T,Kawano K.Fatigue Fract Eng Mater Struct,2006;29:454
[12]Toyosada M,Niwa T,Yamaguchi K,Takenaka H,Aramaki N,Masaki H.Jpn Soc Nay Archit,1992;172:589
[13]Dugdale D S.J Mech Phys Solids,1960;8:100
[14]Zheng J,Powell B E.Int J Fatigue,1999;21:507
[15]Schijve J.Eng Fract Mech,1981;14:461
[16]Kumar R,Singh K.Eng Fract Mech,1995;50:3777
[1] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[2] CHEN Lei, HAO Shuo, ZOU Zongyuan, HAN Shuting, ZHANG Rongqiang, GUO Baofeng. Mechanical Characteristics of TRIP-Assisted Duplex Stainless Steel Fe-19.6Cr-2Ni-2.9Mn-1.6Si During Cyclic Deformation[J]. 金属学报, 2019, 55(12): 1495-1502.
[3] Chao XU, Qiliang NAI, Zhihao YAO, He JIANG, Jianxin DONG. Grain Boundary Oxidation Effect of GH4738 Superalloy on Fatigue Crack Growth[J]. 金属学报, 2017, 53(11): 1453-1460.
[4] Qiliang NAI,Jianxin DONG,Maicang ZHANG,Zhihao YAO. INFLUENCE OF MULTI-MICROSTRUCTURE INTERACTION ON FATIGUE CRACK GROWTH RATE OF GH4738 ALLOY[J]. 金属学报, 2016, 52(2): 151-160.
[5] BI Zongyue, YANG Jun, NIU Jing, ZHANG Jianxun. FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH-STRENGTH PIPELINE STEEL[J]. 金属学报, 2013, 49(5): 576-582.
[6] YANG Jian, DONG Jianxin, ZHANG Maicang. HIGH TEMPERATURE FATIGUE CRACK GROWTH BEHAVIOR OF A NOVEL POWDER METALLURGY SUPERALLOY FGH98[J]. 金属学报, 2013, 49(1): 71-80.
[7] SHENG Hai, DONG Chaofang, XIAO Kui, LI Xiaogang. LOCALIZED ELECTROCHEMICAL CHARACTERIZATION OF HIGH STRENGTH ALUMINIUM ALLOY AT THE CRACK TIP IN 3.5NaCl SOLUTION[J]. 金属学报, 2012, 48(4): 414-419.
[8] LI Wei CHEN Zhenhua CHEN Ding TENG Jie. GROWTH BEHAVIOR OF FATIGUE CRACK IN SPRAY-FORMED SiCp/Al-7Si COMPOSITE[J]. 金属学报, 2011, 47(1): 102-108.
[9] XIONG Ying CHEN Bingbing ZHENG Sanlong GAO Zengliang. STUDY ON FATIGUE CRACK GROWTH BEHAVIOR OF 16MnR STEEL UNDER DIFFERENT CONDITIONS[J]. 金属学报, 2009, 45(7): 849-855.
[10] LU Liantao LI Wei ZHANG Jiwang SHIOZAWA Kazuaki ZHANG Weihua. ANALYSIS OF ROTARY BENDING GIGACYCLE FATIGUE PROPERTIES OF BEARING STEEL GCr15[J]. 金属学报, 2009, 45(1): 73-78.
[11] . The turning point in Paris region of fatigue crack growth in titanium alloy[J]. 金属学报, 2008, 44(8): 973-978 .
[12] YU Huichen; ZHANG Yanji; SUN Yanguo; XIE Shishu; TANAKA Keisuke. Near Threshold Fatigue Crack Growth Behavior in Stainless Steel[J]. 金属学报, 2005, 41(7): 721-726 .
[13] LI Xiaowu; WANG Zhongguang; SUN Shouguang; WU Shiding;LI Shouxin;LI Guangyi (State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015)(Department of Mechanical Engineering; Northern Jiaotong University; Beijing 100044). CYCLIC DEFORMATION BEHAVIOR OF [011] MULTIPLE-SLIP-ORIENTED COPPER SINGLE CRYSTALSCyclic Stress-Strain Response[J]. 金属学报, 1998, 34(5): 545-551.
[14] CHEN Wenzhe;ZHANG Sa;QIAN Kuangwu (Department of Materials; Fuzhou University; Fuzhou 350002)GU Haicheng (Institute of Materials; Xi'an Jiaotong University; Xi'an 710049)WANG Zhongguang (State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015). FATIGUE CRACK GROWTH RATES AND FATIGUE THRESHOLDS OF CENTRIFUGAL SPRAY DEPOSITED Ti-48Al-2Mn-2Nb[J]. 金属学报, 1998, 34(1): 70-74.
[15] LI Xiaodong; WANG Yanbin;CHU Wuyang (University of Science and TechnologyBeijing; Beijing 100083); TIAN Fang; WANG Chen; BAI Chunli (Institute Of Chemistry; Chinese Academy of Sciences; Beijing 100080). INVESTIGATION OF LOADED CRACK TIP ON MICA SURFACE BY ATOMIC FORCE MICROSCOPY[J]. 金属学报, 1997, 33(6): 588-594.
No Suggested Reading articles found!