Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (3): 325-330     DOI:
Research Articles Current Issue | Archive | Adv Search |
Solidification of squeeze casting SiC/Al co-continuous composites
Cite this article: 

. Solidification of squeeze casting SiC/Al co-continuous composites. Acta Metall Sin, 2006, 42(3): 325-330 .

Download:  PDF(723KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  SiC/Al co-continuous composites were fabricated by squeeze casting method, and the effect of SiC foam and process parameters on their solidification, the mechanism of solidification were investigated. The results show the process parameters play important roles in the solidification of composites. The microstructure of composites fabricated by positive squeeze is more uniform than that of composites made by inverse squeeze. The grain of composites is becoming smaller with the increase of squeeze casting pressure, but the change is not obvious. And the grains of composites is also bigger with the enhance of preheat temperature of SiC foam reinforcement. The size of grain is not obviously change, but the morphology of grain is different when the reinforcement is joined into the matrix alloy. The column dendrite that is perpendicular to the strut of SiC foam is easily got when the aperture of reinforcement is smaller. When SiC/Al composites start to solidify, the primary column dendrite α-Al is gotten near the strut of SiC foam, firstly. Then column dendrite α-Al is present after α-Al is growing into the central of aperture. At last, the eutectic silicon appears at the central of aperture where different column dendrite α-Al gathers before the eutectic reaction occurs at the surface of strut.
Key words:  co-continuous composites      process parameters      SiC foam      solidification mechanism      
Received:  08 August 2005     
ZTFLH:  TB333  
  TG113.25  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I3/325

[1] Ibrahim I A, Mohamed F A, Lavernia E J. J Mater Sci, 1991; 26: 137
[2] Lloyd D J. Int Mater Rev, 1994; 39(1): 1
[3] Tszeng T C. Composites, 1998; 29B: 299
[4] Elomari S, Skibo M D, Sundarrajan A, Richards H. Compos Sci Technol, 1998; 58: 369
[5] Gnjidic Z, Bozic D, Mitkov M. Mater Charact, 2001; 47: 129
[6] Yoshimura H N, Goncalves M, Goldenstein H. Key Eng Mater, 1997; 127-131: 984
[7] Clarke D R. J Am Ceram Soc, 1992; 75: 739
[8] Balch D K, Fitzgerald T J, Michaud V J, Mortensen A, Shen Y L, Suresh S. Metall Mater Trans, 1996; 27A: 3700
[9] Zeschky J, Lo J, Hofner T, Greil P. Mater Sci Eng, 2005; A403: 215
[10] Peng H X, Fan Z, Evans J R G. Mater Sci Eng, 2001; A303: 37
[11] Mattern A Huchler B, Staudenecker D, Oberacker R, Nagel A, Hoffmann M J. J Eur Ceram Soc, 2004; 24: 3399
[12] Etter T, Kuebler J, Frey T, Schulz P, Loffler J F, Uggow- itzer P J. Mater Sci Eng, 2004; A386: 61 [13] Lii D F, Huang J L, Chang S T. J Eur Ceram Soc, 2002; 22: 253
[14] Trojanova Z, Gartnerova V, Luka P, Drozd Z. J Alloys Compd, 2004; 378: 19
[15] Zhentg M Y, Wu K, Liang H C, Kamado S, Kojima Y. Mater Lett, 2002; 57: 558
[16] Yong M S, Clegg A J. J Mater Process Technol, 2005; 168: 262
[17] Reihani SMS. Mater Design, 2005; 27: 216
[18] Zhang Q, Chen G Q, Wu G H, Xiu Z Y, Luan B F. Mater Lett, 2003; 57: 1453
[19] Wu S Q, Wei Z S, Tjong S C. Compos Sci Technol, 2000; 60: 2873
[20] Chu S J, Wu R J. Compos Sci Technol, 1999; 59: 157
[21] Kim B G, Dong S L, Park S D. Mater Chem Phys, 2001; 72: 42
[22] Yu Z Q, Wu G H, Jiang L T, Sun D L. Mater Lett, 2005; 59: 2281
[23] Zhang X X , Wang D Z , Geng L. J Mater Sci Lett, 2003; 22: 861
[24] Mortensen A, Cornie J A, Flemings M C. Metall Trans, 1988; 19A: 709
[25] Dutta B, Surappa M K. Composites, 1998; 29A: 565
[26] Brasczynski J, Zyska A. Mater Sci Eng, 2000; A278: 195
[27] Nagarajan S, Dutta B, Surappa M K. Compos Sci Technol, 1999; 59: 897
[28] Mortensen A, Jin I. Int Mater Rev, 1992; 37: 101
[29] Satyanarayana K G, Ojha S N, Kumar D N N, Sastry G V S. Mater Sci Eng, 2001; A304-306: 627
[30] Youssef Y M, Dashwood R J, Lee P D. Mater Sci Eng, 2005; A391: 427
[31] Eardley E S, Flower H M. Mater Sci Eng, 2003; A359: 303
[32] Souza S A, Rios C T, Coelho A A, Ferrandini P L, Gama S, Caram R. J Alloys Compd, 2005; 402: 156
[33] Xing H W, Cao X M, Hu W P, Zhao L Z, Zhang J S. Mater Lett, 2005; 59: 1563
[34] Zhao L Z, Cao X M, Hu W P, Zhang J S. J Chin Mater Res, 2005; 19: 485 (赵龙志,曹小明,胡宛平,张劲松.材料研究学报,2005;19: 485)
[1] PENG Peng, LI Xinzhong, LIU Dongmei, SU Yanqing, GUO Jingjie, FU Hengzhi. MICROSTRUCTURE EVOLUTION OF DIRECTIONALLY SOLIDIFIED Al-12%Ni HYPEREUTECTIC ALLOY[J]. 金属学报, 2013, 49(3): 311-319.
[2] YAN Erhu LI Xinzhong XU Daming ZHAO Guangwei ZHOU Jianxin GUO Jingjie FU Hengzhi. SOLIDIFICATION MECHANISM OF TERNARY QUASIPERITECTIC ALLOY OF Al-11.8Cu-24.22Mg[J]. 金属学报, 2011, 47(11): 1464-1469.
No Suggested Reading articles found!