|
|
Hydrogen Damage and Delayed Fracture in Zr Base Bulk Metallic Glass |
SHAN Guangbin; WANG Yongwei; LI Jinxu;GAO Kewei; SU Yanjing; QIAO Lijie;HUI Xidong;CHU Wuyang |
Department of Materials Physics; University of Science and Technology Beijing; Beijing 100083 |
|
Cite this article:
SHAN Guangbin; WANG Yongwei; LI Jinxu; GAO Kewei; SU Yanjing; QIAO Lijie; HUI Xidong; CHU Wuyang. Hydrogen Damage and Delayed Fracture in Zr Base Bulk Metallic Glass. Acta Metall Sin, 2005, 41(1): 99-.
|
Abstract Initiation, growth and breakage of hydrogen blistering and
hydrogen--induced delayed fracture under constant load
in bulk metallic glass
Zr41.2Ti13.8Ni10Cu12.5Be22.5
have been investigated. The results show that when
charging current density i<20 mA/cm2,
there are no hydrogen blisterings and
microcracks on the surface of the specimens
and the normalized threshold stress
intensity factor is KIH/KIC=0.63.
where KIC=62.2 MPa.m1/2.
When i20 mA/cm2, hydrogen blisterings
and microcracks appear in the specimen under no loading, while
KIH}/ KIC decreases from 0.63 to 0.26.
The critical pressure necessary for a stable blistering
formation is pi3.6 GPa,
and that for cleavage propagation of the blistering is pC3.9
GPa. The crack formed through blistering cracking will be arrested after
propagating 20 to 30 um, and the arrested crack
will propagate again because of entering of hydrogen
atoms. At last, the blistering with cracking will be broken
and leave local cleavage fracture
surface with arrested lines on the
surface of the sample without loading.
|
Received: 06 January 2004
|
|
[1] Viswanadham R K, Green J A S, Montague W G. ScrMetall, 1976; 10: 229 [2] Kawashina A, Hashimoto K. Scr Metall, 1980; 14: 41 [3] Ashock S, Stoloff N S, Glicksman M E, Slavin T. Scr Met-all, 1981; 15: 331 [4] Tong H S, Macur J E. Corrosion, 1982; 38: 464 [5] Schroeder H W, Koster U. J Non-Cryst Solids, 1983; 56:213 [6] Namboodhiri T K, Ramesh T A, Singh G, Seghal S. MaterSci Eng, 1983; 61: 23 [7] Flis J, Ashok S, Stoloff N S , Duguette D S. Acta Metall,1987; 56: 2071 [8] Lin J J, Perng T P. J Mater Sci Lett, 1991; 10: 1443 [9] Lin J J, Perng T P. Metall Mater Trans, 1995; 26A: 197 [10] Elaiz N, Eliezer D. Adv Perform Mater, 1999; 6: 5 [11] Duh D, Dauskardt R H. Scr Mater, 2000; 42: 233 [12] Duh D, Asoka-kumar P, Dauskardt R H. Acta Mater,2002; 50: 537 [13] Guo J X, Li J X, Qiao L J, Gao K W, Chu W Y. CorrosSci, 2003; 45: 735 [14] Chu W Y, Gao K W, Huang C H, Wang Y B, Qiao L J.Corrosion, 2000; 56: 1046 [15] Pan C, Su Y J, Chu W Y, Li Z B, Liang D T, Qiao L J.Corros Sci, 2002; 44: 1983 [16] Chu W Y, Qiao L J, Chen Q Z, Gao K W. Fracture and Environmental Fracture. Beijing: Science Press, 2000: 120(褚武扬,乔利杰,陈奇志,高克玮.断裂与环境断裂.北京:科学出版社,2000:120) [17] Lin L C. Acta Metall, 1987; 35: 1663 [18] Floris K M, Dauskardt R H. Acta Mater, 2001; 49, 2547 [19] Huang Y J. Amorphous Magnetic Physics and Materials.Xi'an: University of Electronic Science and TechnologyPress, 1991: 85(黄永杰.非晶态磁性物理与材料.西安:电子科技大学出版社1991:85) [20] Rooke D P, Cartwright D. J Compendium of Stress Intensity Factors. London: Her Majesty's Stationary Office, 1976: 274Q |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|