Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (1): 99-    DOI:
Research Articles Current Issue | Archive | Adv Search |
Hydrogen Damage and Delayed Fracture in Zr Base Bulk Metallic Glass
SHAN Guangbin; WANG Yongwei; LI Jinxu;GAO Kewei; SU Yanjing; QIAO Lijie;HUI Xidong;CHU Wuyang
Department of Materials Physics; University of Science and Technology Beijing; Beijing 100083
Cite this article: 

SHAN Guangbin; WANG Yongwei; LI Jinxu; GAO Kewei; SU Yanjing; QIAO Lijie; HUI Xidong; CHU Wuyang. Hydrogen Damage and Delayed Fracture in Zr Base Bulk Metallic Glass. Acta Metall Sin, 2005, 41(1): 99-.

Download:  PDF(204KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Initiation, growth and breakage of hydrogen blistering and hydrogen--induced delayed fracture under constant load in bulk metallic glass Zr41.2Ti13.8Ni10Cu12.5Be22.5 have been investigated. The results show that when charging current density i<20 mA/cm2, there are no hydrogen blisterings and microcracks on the surface of the specimens and the normalized threshold stress intensity factor is KIH/KIC=0.63. where KIC=62.2 MPa.m1/2. When i20 mA/cm2, hydrogen blisterings and microcracks appear in the specimen under no loading, while KIH}/ KIC decreases from 0.63 to 0.26. The critical pressure necessary for a stable blistering formation is pi3.6 GPa, and that for cleavage propagation of the blistering is pC3.9 GPa. The crack formed through blistering cracking will be arrested after propagating 20 to 30 um, and the arrested crack will propagate again because of entering of hydrogen atoms. At last, the blistering with cracking will be broken and leave local cleavage fracture surface with arrested lines on the surface of the sample without loading.
Key words:  Zr base bulk metallic glass      hydrogen blistering      hydrogen-induced delayed failure      
Received:  06 January 2004     
ZTFLH:  TB383  
  TG111.91  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I1/99

[1] Viswanadham R K, Green J A S, Montague W G. ScrMetall, 1976; 10: 229
[2] Kawashina A, Hashimoto K. Scr Metall, 1980; 14: 41
[3] Ashock S, Stoloff N S, Glicksman M E, Slavin T. Scr Met-all, 1981; 15: 331
[4] Tong H S, Macur J E. Corrosion, 1982; 38: 464
[5] Schroeder H W, Koster U. J Non-Cryst Solids, 1983; 56:213
[6] Namboodhiri T K, Ramesh T A, Singh G, Seghal S. MaterSci Eng, 1983; 61: 23
[7] Flis J, Ashok S, Stoloff N S , Duguette D S. Acta Metall,1987; 56: 2071
[8] Lin J J, Perng T P. J Mater Sci Lett, 1991; 10: 1443
[9] Lin J J, Perng T P. Metall Mater Trans, 1995; 26A: 197
[10] Elaiz N, Eliezer D. Adv Perform Mater, 1999; 6: 5
[11] Duh D, Dauskardt R H. Scr Mater, 2000; 42: 233
[12] Duh D, Asoka-kumar P, Dauskardt R H. Acta Mater,2002; 50: 537
[13] Guo J X, Li J X, Qiao L J, Gao K W, Chu W Y. CorrosSci, 2003; 45: 735
[14] Chu W Y, Gao K W, Huang C H, Wang Y B, Qiao L J.Corrosion, 2000; 56: 1046
[15] Pan C, Su Y J, Chu W Y, Li Z B, Liang D T, Qiao L J.Corros Sci, 2002; 44: 1983
[16] Chu W Y, Qiao L J, Chen Q Z, Gao K W. Fracture and Environmental Fracture. Beijing: Science Press, 2000: 120(褚武扬,乔利杰,陈奇志,高克玮.断裂与环境断裂.北京:科学出版社,2000:120)
[17] Lin L C. Acta Metall, 1987; 35: 1663
[18] Floris K M, Dauskardt R H. Acta Mater, 2001; 49, 2547
[19] Huang Y J. Amorphous Magnetic Physics and Materials.Xi'an: University of Electronic Science and TechnologyPress, 1991: 85(黄永杰.非晶态磁性物理与材料.西安:电子科技大学出版社1991:85)
[20] Rooke D P, Cartwright D. J Compendium of Stress Intensity Factors. London: Her Majesty's Stationary Office, 1976: 274Q
[1] ;. EFFECT OF STRESS AND INCLUSION ON HYDROGEN BLISTERING[J]. 金属学报, 2006, 42(8): 815-819 .
No Suggested Reading articles found!