Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (1): 28-    DOI:
Research Articles Current Issue | Archive | Adv Search |
Shot Peening Induced Strengthening Of The Surface Layer Of Martensite Stainless Steel 0Cr13Ni4Mo
MA Suyuan; CHEN Ri; HE Xiaochun; LI Jiabao;HAO Xuezhuo
Shenyang National Laboratory for Materials Science; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110016
Cite this article: 

MA Suyuan; CHEN Ri; HE Xiaochun; LI Jiabao; HAO Xuezhuo. Shot Peening Induced Strengthening Of The Surface Layer Of Martensite Stainless Steel 0Cr13Ni4Mo. Acta Metall Sin, 2005, 41(1): 28-.

Download:  PDF(213KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A low carbon martensite stainless steel 0Cr13Ni4Mo normalized at 1000℃ and tempered at 600℃, used in the guide stream assemblies of water turbine, was treated with shot peening. The depth distributions of microhardness, half-width value of X-ray diffraction profiles and yield strength in the shot-peening affected layer were measured. Correspondingly, the depth distributions of microstructure parameters, such as subgrain size, microstrain and dislocation density, in this layer were calculated. The experimental results indicate that the structure strengthening charactered by microhardness and yield strength is prominent. The subgrain size decreases, and the microstrain and dislocation density increase in the shot-peening affected layer. As a result, the microhardness and yield strength in this layer increase. The ratios of microhardness to proof stress, , are all about 3.37 in different depth of the affected layer. The relation of the half-width value, Hw, and microhardness, HV, in this layer is linear, which is composed of two beelines: if HV<2835MPa, Hw=2.07×10-3HV-3.47, and if HV>2835MPa, Hw=1.14×10-3HV-0.81. The relation of the proof stress, , and square root of dislocation density, , in this layer is also linear: =551+16.2×10-4 .
Key words:  martensite stainless steel      shot peening affected layer      structure strengthening      
Received:  17 March 2004     
ZTFLH:  TG142.7  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I1/28

[1] Li X Y, Zhang Z Q. In: Sun G X ed, Proc of 9th Chinese Conf on Foundry, Shenyang: Northeastern University Press, 1997: 51(李新亚,张仲秋.见:孙国雄主编,第九届中国铸造学术会议论文集,沈阳:东北大学出版社,1997:51)
[2] Wang Z C, Chen H N. Abrasive Erosion Hydraulic Turbine, 2001: 56(王者昌,陈怀宁.水机磨蚀,2001:56)
[3] Duan G C. Silt Abrasive Erosion of Hydraulic Turbine. Beijing: Tsinghua University Press, 1981(段国昌.水轮机沙粒磨损.北京:清华大学出版社,1981)
[4] Hirsch T, Vohringer O, Macherauch E. Horterei-technMitt, 1986; 41(3): 166
[5] Hashimoto M, Shiratori M, Nagashima S. In: Iida K ed,Proc 4th Int Conf on Shot Peening, Tokyo: Japan Societyof Precision Engineering, 1990: 495
[6] Sharp P K, Clayton J Q, Clark G. Fatigue Fract EngMater Struct, 1994; 17(3): 243
[7] Kunio N. Tetsu-to-Hagane, 1994; 80, N233
[8] Vohringer O. In: Wohlfahrt H, Kopp R, Vohringer O eds,Shot Peening Science Technology Application, Oberursel:Informationsgesellschaft Verlag, 1987: 185
[9] Li J B. Chin J Mater Res, 1998; 12: 287(李家宝.材料研究学报,1998;12:287)
[10] Li J B. Liu F Z, Ji V. Surf Eng, 1998; 14: 469
[11] Xu J H. Masters Thesis, Institute of Metal Research, The Chinese Academy of Sciences, Shenyang, 2003(徐建辉.中国科学院金属研究所硕士学位论文,沈阳,2003)
[12] Ji V, Zhang Y G, Chen C Q. Surf Coat Technol, 2000;130: 95
[13] Ji N, Lebrun J L, Belliad P, Bourniquel B, Maeder G. In:Beck G, Denis S, Simon A eds, Proc of 2nd Int Conf OnResidual Stresses, Int Conf on Residual Stresses, London:Elsevier Applied Science, 1989: 65
[14] Hayden H W, Floreen S. Metall Trans, 1973; 4: 561
[15] Liu S. Fatigue Performance and Strengthening Technologyof Shot Peening for Metallic Materials. Beijing: DefenceIndustry Press, 1977: 48(刘锁.金属材料的疲劳性能与喷丸强化工艺.北京:国防工业出版社,1977:48)
[16] Ashby M F, Jones D R H. Engineering Materials. Oxford:Pergamon Press, 1980: 105
[17] Wang R Z. J Mech Eng Mater, 1988; 68(5): 19(王仁智.机械工程材料,1988;68(5):19)
[18] Feng D. Metallic Physics: Metal Mechanical Property. Beijing: Science Press, 1999: 373(冯端.金属物理学-金属力学性质.北京:科学出版社,1999:373)
[19] Lai Z H. Crystal Defect and Mechanical Properties of Metals. Beijing: Metallurgical Industry Press, 1988: 197(赖祖涵.金属的晶体缺陷与力学性质.北京:冶金工业出版社,1988:197)
[1] Yefei MA, Zhuman SONG, Siqian ZHANG, Lijia CHEN, Guangping ZHANG. Evaluation of Fatigue Properties of CA6NM Martensite Stainless Steel Using Miniature Specimens[J]. 金属学报, 2018, 54(10): 1359-1367.
No Suggested Reading articles found!