Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (9): 967-971     DOI:
Research Articles Current Issue | Archive | Adv Search |
Stress Corrosion Cracking Behavior of X70 PipelineSteel in Near-Neutral pH Solutions at Different Temperatures
GUO Hao; LI Guangfu; CAI Xun; YANG Wu
College of Materials Science and Engineering; Shanghai Jiaotong University; Shanghai 200030;Shanghai Research Institute of Materials; Shanghai 200437
Cite this article: 

GUO Hao; LI Guangfu; CAI Xun; YANG Wu. Stress Corrosion Cracking Behavior of X70 PipelineSteel in Near-Neutral pH Solutions at Different Temperatures. Acta Metall Sin, 2004, 40(9): 967-971 .

Download:  PDF(9314KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The stress corrosion cracking (SCC) behaviors of X70 pipeline steel in near-neutral pH solutions at different temperatures and applied potentials are studied with slow strain rate testing (SSRT). The results show that the cracking mode of X70 pipeline steel in near-neutral pH solutions is transgranular at different temperatures with the feature of quasi-cleavage. The susceptibility to SCC increases as the applied potential moved towards the cathodic direction. Hydrogen induced cracking (HIC) dominates the process. The value of pH decreases slightly with decreasing temperature of the solution, and the susceptibility to SCC increases.
Key words:  pipeline steel      stress corrosion cracking      near-neutral pH solution      
Received:  26 September 2003     
ZTFLH:  TG172.8  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I9/967

[1] Gonzalez-Rodriguez J G, Gasales M, Salinas-Bravo V M,Albarran J L, Martinez L. Corrosion, 2002; 58: 584
[2] Rebak R B, Xia Z, S.afruddin R, Szklarska-Smialowska Z.Corrosion, 1996; 52: 396
[3] Zhang X Y, Lambert S B, Sutherby R, Plumtree A. Corrosion, 1999; 55: 297
[4] Chen W, King F, Vokes E. Corrosion, 2002; 58: 267
[5] Parkins R N, Blanchard W K Jr, Delanty B S. Corrosion,1994; 50: 394
[6] Gu B, Luo J, Mao X. Corrosion, 1999; 55: 96
[7] Puiggali M, Rousserie S, Touzet M. Corrosion, 2002; 58:961
[8] Gu B, Yu W Z, Luo J L, Mao X. Corrosion, 1999; 55: 312
[9] Bulger J, Luo J L. In: Ellwood J R, ed., Proc Int Pipeline Conf 2000, Vol.2, New York: The American Society of Mechanical Engineers, 2000: 947
[10] Chen W X, Wang S H, King F, Jack T R, Wilmott M J. In: Ellwood J R, ed., Proc Int Pipeline Conf 2000, Vol. 2, New York: The American Society of Mechanical Engineers, 2000: 953
[11] Guo H, Cai X, Yang W. Mater Mech Eng, 2002; 26(4) : 1(郭浩,蔡珣,杨武机械工程材料,2002;26(4) :1)
[12] translated by Gu Z J, Wu G P. Brief Chemistry Handbook. Beijing: Chemical Industry Press, 1960: 313(著.顾振军,吴国沛译.简明化学手册.北京:化学工业出版社, 1960:313)
[1] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[2] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[3] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[4] LI Xueda, LI Chunyu, CAO Ning, LIN Xueqiang, SUN Jianbo. Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel[J]. 金属学报, 2021, 57(8): 967-976.
[5] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[6] CHEN Fang,LI Yadong,YANG Jian,TANG Xiao,LI Yan. Corrosion Behavior of X80 Steel Welded Joint in Simulated Natural Gas Condensate Solutions[J]. 金属学报, 2020, 56(2): 137-147.
[7] Yadong LI,Qiang LI,Xiao TANG,Yan LI. Reconstruction and Characterization of Galvanic Corrosion Behavior of X80 Pipeline Steel Welded Joints[J]. 金属学报, 2019, 55(6): 801-810.
[8] Hongchi MA, Cuiwei DU, Zhiyong LIU, Yong LI, Xiaogang LI. Comparative Study of Stress Corrosion Cracking Behaviors of Typical Microstructures of Weld Heat-Affected Zones of E690 High-Strength Low-Alloy Steel in SO2-Containing Marine Environment[J]. 金属学报, 2019, 55(4): 469-479.
[9] Ping DENG,Chen SUN,Qunjia PENG,En-Hou HAN,Wei KE,Zhijie JIAO. Study on Irradiation Assisted Stress Corrosion Cracking of Nuclear Grade 304 Stainless Steel[J]. 金属学报, 2019, 55(3): 349-361.
[10] Timing ZHANG, Weimin ZHAO, Wei JIANG, Yonglin WANG, Min YANG. Numerical Simulation of Hydrogen Diffusion in X80 Welded Joint Under the Combined Effect of Residual Stress and Microstructure Inhomogeneity[J]. 金属学报, 2019, 55(2): 258-266.
[11] Jun YU, Deping ZHANG, Ruosheng PAN, Zehua DONG. Electrochemical Noise of Stress Corrosion Cracking of P110 Tubing Steel in Sulphur-Containing Downhole Annular Fluid[J]. 金属学报, 2018, 54(10): 1399-1407.
[12] Yun SHU, Maocheng YAN, Yinghua WEI, Fuchun LIU, En-Hou HAN, Wei KE. Characteristics of SRB Biofilm and Microbial Corrosionof X80 Pipeline Steel[J]. 金属学报, 2018, 54(10): 1408-1416.
[13] Xianbo SHI, Wei YAN, Wei WANG, Yiyin SHAN, Ke YANG. Hydrogen-Induced Cracking Resistance of Novel Cu-Bearing Pipeline Steels[J]. 金属学报, 2018, 54(10): 1343-1349.
[14] Hongzhong YUAN,Zhiyong LIU,Xiaogang LI,Cuiwei DU. Influence of Applied Potential on the Stress Corrosion Behavior of X90 Pipeline Steel and Its Weld Joint in Simulated Solution of Near Neutral Soil Environment[J]. 金属学报, 2017, 53(7): 797-807.
[15] Hongxia WAN,Dongdong SONG,Zhiyong LIU,Cuiwei DU,Xiaogang LI. Effect of Alternating Current on Corrosion Behavior of X80 Pipeline Steel in Near-Neutral Environment[J]. 金属学报, 2017, 53(5): 575-582.
No Suggested Reading articles found!