Please wait a minute...
Acta Metall Sin  1997, Vol. 33 Issue (5): 548-556    DOI:
Current Issue | Archive | Adv Search |
MECHANICAL PROPERTIES AROUND REINFORCE PARTICLES IN METAL MATRIX COMPOSITES CHARACTERIZED BY NANOINDENTATION TECHNIQUE
ZHANG Jishan;LIU Xingjiang;CUI Hua;DUAN Xianjin;CHEN Guoliang (University of Science and Technology Beijing; Beijing 100083)
Cite this article: 

ZHANG Jishan;LIU Xingjiang;CUI Hua;DUAN Xianjin;CHEN Guoliang (University of Science and Technology Beijing; Beijing 100083). MECHANICAL PROPERTIES AROUND REINFORCE PARTICLES IN METAL MATRIX COMPOSITES CHARACTERIZED BY NANOINDENTATION TECHNIQUE. Acta Metall Sin, 1997, 33(5): 548-556.

Download:  PDF(2224KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Spray deposited 2014Al+ 15%SiCp and 18Ni (250) maraging steel+ 10%(Al2O3)p metal matrix composites (MMCs) show an accelerated aging behavior. The aging behavior of the MMCs was evaluated by the nanoindentation technique. It was found that there exists obvious gradient distribution of elastic modulus and microhardness around the reinforcement particles, which is the result of the gradient distribution of the reinforcing precipitates caused by the gradient distribution of the thermal misfit dislocation density. This result may provide the useful information for the more accurate prediction of the aging behavior of the MMCs with age hardnable alloy matrix.
Key words:  sprayforming      metal matrix composite      interface      nanoindentation     
Received:  18 May 1997     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1997/V33/I5/548

1 Brotzen F R. In t Mater Rev, 1994, 39:24
2 Oliver W C. Mater Res Soc Bull, 1986; 11:15
3 Pharr G M, Oliver W C. Mater Res Soc Bull, 1992, 17: 28
4 Fougere G E, Riester L, Ferber M, Weertman J R, Siegel R W. Mater Sci Eng, 1995, A204:1
5 刘兴江.北京科技大学硕士学位论文,1996
6 Mazilu P, Ondracek G. In: Hansen N ed., Thermal Effects in Fracture of Multiphase Materials,Berlin, 1989: 255
7 Lee J K, Earmme Y Y, Aaronson H I, Russel K C. Metall Trans, 1980; 11A:1837
8 Kim C T, Lee J K, Plichta M R. Metall Trans, 1990; 21A:673
9 Dutta I, Bourell D L. Acta Metall Mater, 1990; 38:2041
10 Avrami M. J Chem Phys, 1939; 7:1103
11 Avrami M. J Chem Phys, 1940; 8:212
12 Cottrell A H, Bilby B A. Proc Phys Soc Lond, 1949, A62: 49
13 Shewmon P G. Diffusion in Solids. New York: McGraw-Hill, 1963: 175
[1] WANG Furong, ZHANG Yongmei, BAI Guoning, GUO Qingwei, ZHAO Yuhong. First Principles Calculation of Al-Doped Mg/Mg2Sn Alloy Interface[J]. 金属学报, 2023, 59(6): 812-820.
[2] LI Qian, SUN Xuan, LUO Qun, LIU Bin, WU Chengzhang, PAN Fusheng. Regulation of Hydrogen Storage Phase and Its Interface in Magnesium-Based Materials for Hydrogen Storage Performance[J]. 金属学报, 2023, 59(3): 349-370.
[3] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[4] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[5] ZHOU Xiaobin, ZHAO Zhanshan, WANG Wanxing, XU Jianguo, YUE Qiang. Physical and Mathematical Simulation on the Bubble Entrainment Behavior at Slag-Metal Interface[J]. 金属学报, 2023, 59(11): 1523-1532.
[6] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[7] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[8] ZHU Bin, YANG Lan, LIU Yong, ZHANG Yisheng. Micromechanical Properties of Duplex Microstructure of Martensite/Bainite in Hot Stamping via the Reverse Algorithms in Instrumented Sharp Indentation[J]. 金属学报, 2022, 58(2): 155-164.
[9] FAN Genlian, GUO Zhiqi, TAN Zhanqiu, LI Zhiqiang. Architecture Design Strategies and Strengthening-Toughening Mechanisms of Metal Matrix Composites[J]. 金属学报, 2022, 58(11): 1416-1426.
[10] LU Lei, ZHAO Huaizhi. Progress in Strengthening and Toughening Mechanisms of Heterogeneous Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1360-1370.
[11] HU Biao, ZHANG Huaqing, ZHANG Jin, YANG Mingjun, DU Yong, ZHAO Dongdong. Progress in Interfacial Thermodynamics and Grain Boundary Complexion Diagram[J]. 金属学报, 2021, 57(9): 1199-1214.
[12] ZHAO Yuhong, JING Jianhui, CHEN Liwen, XU Fanghong, HOU Hua. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection[J]. 金属学报, 2021, 57(9): 1107-1125.
[13] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[14] ZHU Shize, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. Influence of Cu Content on the Negative Effect of Natural Aging in SiC/Al-Mg-Si-Cu Composites[J]. 金属学报, 2021, 57(7): 928-936.
[15] SUN Xiaojun, HE Jie, CHEN Bin, ZHAO Jiuzhou, JIANG Hongxiang, ZHANG Lili, HAO Hongri. Effect of Fe Content on the Microstructure, Electrical Resistivity, and Nanoindentation Behavior of Zr60Cu40-xFex Phase-Separated Metallic Glasses[J]. 金属学报, 2021, 57(5): 675-683.
No Suggested Reading articles found!