Please wait a minute...
Acta Metall Sin  1988, Vol. 24 Issue (1): 11-16    DOI:
Current Issue | Archive | Adv Search |
EFFECT OF Ti AND V ON HYDROGEN-DISLOCATION INTERACTION IN Fe
MAO Ou Institute of Solid State Physics;Academia Sinica; HefeiDU Jiaju Associate Professor;Institute of Solid State Physics;Academia Sinica Hefei
Cite this article: 

MAO Ou Institute of Solid State Physics;Academia Sinica; HefeiDU Jiaju Associate Professor;Institute of Solid State Physics;Academia Sinica Hefei. EFFECT OF Ti AND V ON HYDROGEN-DISLOCATION INTERACTION IN Fe. Acta Metall Sin, 1988, 24(1): 11-16.

Download:  PDF(525KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The hydrogen induced cold work peaks (H-CWP) related to hydrogen-dislocation interaction for Fe-0.5 wt-% Ti and Fe-0.5 wt-% V alloys have beeninvestigated and the activation energies for the peaks obtained. The binding energiesbetween hydrogen and dislocation have also been estimated. Significant differenceon H-CWP for two alloys has been observed, that implies the effect of elements onH-CWP of Fe is significant. The stronger the interaction between hydrogen andalloy element is, the more significant the effect is. It is noticed that there issome correlation between the results of internal friction ditermination and themechanical properties.
Key words:  hydrogen      dislocation      hydrogen embrittlement      internal friction     
Received:  18 January 1988     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1988/V24/I1/11

1 Donovan J A. Metall Trans, 1976; 7A: 1677
2 Fujita F E. Trans Jpn Inst Met, 1976; 17: 232
3 Heller W R. Acta Metall, 1961; 9: 600
4 Gibala R. Trans AIME, 1967; 239: 1574
5 Weiner L C, Gensamer M. Acta Metall, 1957; 5: 692
6 Asano S, Kitamura A, Otsuka R. Scr Metall. 1978; 12: 805
7 Kikuta Y, Sugimoto K, Ochiai S, Iwata K. Trans Iron Steel Inst Jpn. 1975; 15: 87
8 Ritchie I G, Dufresne J F, Moser P. Phys Status Solidi, 1979; 52A: 331
9 Sturges C M. Miodownik A P. Acta Metall, 1969; 17: 1197
10 Du J J, Mao O, Wang X. In: Yan M G et al eds., Mechanical Behaviour of Materials-V, New York: Pergamon, 1987; 855
11 Shirley A I, Hall CK. Scr Metall, 1983; 17: 1003
12 Koiwa M. Acta Metoll, 1974; 22: 1259
13 Hirth J P. Metall Trans. 1980; 11A: 861
14 Schoeck G. Acta Metall, 1963; 11: 617
15 Seeger A. Phys Status Solidi. 1979; 55A: 457H
[1] LI Qian, SUN Xuan, LUO Qun, LIU Bin, WU Chengzhang, PAN Fusheng. Regulation of Hydrogen Storage Phase and Its Interface in Magnesium-Based Materials for Hydrogen Storage Performance[J]. 金属学报, 2023, 59(3): 349-370.
[2] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[3] DU Zonggang, XU Tao, LI Ning, LI Wensheng, XING Gang, JU Lu, ZHAO Lihua, WU Hua, TIAN Yucheng. Preparation of Ni-Ir/Al2O3 Catalyst and Its Application for Hydrogen Generation from Hydrous Hydrazine[J]. 金属学报, 2023, 59(10): 1335-1345.
[4] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[5] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[6] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[7] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[8] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[9] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[10] XIAO Na, HUI Weijun, ZHANG Yongjian, ZHAO Xiaoli. Hydrogen Embrittlement Behavior of a Vacuum-Carburized Gear Steel[J]. 金属学报, 2021, 57(8): 977-988.
[11] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[12] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[13] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[14] ZHU Min, OUYANG Liuzhang. Kinetics Tuning and Electrochemical Performance of Mg-Based Hydrogen Storage Alloys[J]. 金属学报, 2021, 57(11): 1416-1428.
[15] LIANG Jinjie, GAO Ning, LI Yuhong. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. 金属学报, 2020, 56(9): 1286-1294.
No Suggested Reading articles found!