Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (9): 1025-1032    DOI: 10.3724/SP.J.1037.2012.00147
论文 Current Issue | Archive | Adv Search |
MODELLING FLUID FLOW AND HEAT TRANSFER PHENOMENA IN KEYHOLING STAGE OF PLASMA ARC WELDING
ZHANG Tao, WU Chuansong, CHEN Maoai
Key Lab for Liquid-Solid Structure Evolution and Materials Processing (Ministry of Education), Shandong University, Jinan 250061
Cite this article: 

ZHANG Tao WU Chuansong CHEN Maoai. MODELLING FLUID FLOW AND HEAT TRANSFER PHENOMENA IN KEYHOLING STAGE OF PLASMA ARC WELDING. Acta Metall Sin, 2012, 48(9): 1025-1032.

Download:  PDF(3448KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Because of its high gas velocity and heat input, plasma arc welding (PAW) can penetrate thicker workpieces with a single pass because PAW can operate in the keyhole mode. Compared with electron beam and laser beam welding, keyhole PAW is more cost effective and more tolerant of joint preparation, so that it is widely used in manufacturing structures with medium thickness. However, the keyhole establishment and sustainment during the initial stage of PAW process, i.e., the keyholing process, has a critical effect on the process stability and the weld quality. Thus, modelling and simulating of the keyholing process and its influence on fluid flow and heat transfer in keyhole PAW process is of great significance to completely understand the process mechanism. With considering the interaction between weld pool and keyhole, a three dimensional transient model of fluid flow and heat transfer in weld pool is developed for numerical analysis of keyholing process in PAW. The volume of fluid method (VOF) is used to track the keyhole shape and size. The latent heat and momentum sink due to solidifying and melting are dealt with by enthalpy-porosity technique. Considering the larger ratio of PAW weld depth to width, a combined volumetric heat source model is established, and one of its distribution parameters is adjusted dynamically with the variation of keyhole depth. The evolution of fluid flow and thermal field in weld pool, and the keyholing process are quantitatively analyzed on the stainless steel plates of thickness 8 mm. The feature of fluid flow in weld pool is revealed. The predicted keyhole size at bottom side of workpiece and fusion line at transverse cross-section of welds agree with the experimentally measured results.
Key words:  weld pool      keyhole      fluid flow      heat transfer      plasma arc welding     
Received:  19 March 2012     
Fund: 

Supported by National Natural Science Foundation of China (No.50936003) and Specialized Research Fund for the Doctoral Program of High Education (No.20090131110023)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00147     OR     https://www.ams.org.cn/EN/Y2012/V48/I9/1025

[1] Lucas W. In: Hirata Y, Tanaka M eds., Proc 8th Int Symp on Innovations in Welding and Joining for a New Era in Manufacturing, Kyoto: Japan Welding Society, 2008: 189

[2] Irving B. Weld J, 1997; 76(1): 31

[3] Kaplan A. J Phys, 1994; 27D: 1805

[4] Colla T J, Vicanek M, Simon G. J Phys, 1994; 27D: 2035

[5] Sudnik W, Radaj D, Breitschwerd S, Erofeew W. J Phys, 2000; 33D: 662

[6] Cho J H, Na S J. J Phys, 2006; 39D: 5372

[7] Kazemi K, Goldak J A. Comput Mater Sci, 2009; 44: 841

[8] Wang R P, Lei Y P, Shi Y W. Opt Laser Technol, 2011; 43: 870

[9] Xu G X. PhD Thesis, Shandong University, Jinan, 2009

(胥国祥. 山东大学博士学位论文, 济南, 2009)

[10] Dong H G, Gao H M, Wu L. Trans China Weld Inst, 2002; 23(4): 24

(董红刚, 高洪明, 吴林. 焊接学报, 2002; 23(4): 24)

[11] Wu C S, Wang H G, Zhang M X. Acta Metall Sin, 2006; 42: 311

(武传松, 王怀刚, 张明贤. 金属学报, 2006; 42: 311)

[12] Wu C S, Hu Q X, Gao J Q. Comput Mater Sci, 2009; 46: 167

[13] Li L, Hu S S, Yin F L, Ma L. J Tianjin Univ, 2007; 40: 1260

(李力, 胡绳荪, 殷凤良, 马立. 天津大学学报, 2007; 40: 1260)

[14] Yin F L. PhD Thesis, Tianjin University, 2007

(殷凤良. 天津大学博士学位论文, 2007)

[15] Lei Y C, Zheng H J, Cheng X N. Trans China Weld Inst, 2003; 24(1): 44

(雷玉成, 郑惠锦, 程晓农. 焊接学报, 2003; 24(1): 44)

[16] Hsu Y F, Rubinsky B. Int J Heat Mass Transfer, 1988; 31: 1409

[17] Nehad A K. Int Commun Heat Mass Transfer, 1995; 22: 779

[18] Keanini R G, Rubinsky B. Int J Heat Mass Transfer, 1993; 36: 3283

[19] Wang X J, Wu C S, Chen M A. Acta Metall Sin, 2010; 46: 984

(王小杰, 武传松, 陈茂爱. 金属学报, 2010; 46: 984)

[20] Fan H G, Kovacevic R. J Phys, 1999; 32D: 2902

[21] Huo Y S, Wu C S, Chen M A. Acta Metall Sin, 2011; 47: 706

(霍玉双, 武传松, 陈茂爱. 金属学报, 2011; 47: 706)

[22] Voller V R, Prakash C. Int J Heat Mass Transfer, 1987; 30: 1709

[23] Sun J H, Wu C S, Qin G L. Acta Metall Sin, 2011; 47: 1061

(孙俊华, 武传松, 秦国梁. 金属学报, 2011; 47: 1061)

[24] Wu C S. Welding Thermal Processes and Weld Pool Behaviors. Beijing: China Machine Press, 2008: 123

(武传松. 焊接热过程与熔池形态. 北京: 机械工业出版社, 2008: 123)

[25] TaoWQ. Numerical Heat Transfer. 2nd Ed., Xi’an: Xi’an Jiaotong University Press, 2001: 218

(陶文铨. 数值传热学. 第2版, 西安: 西安交通大学出版社, 2001: 218)
[1] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[2] LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. 金属学报, 2021, 57(5): 693-702.
[3] TANG Haiyan, LIU Jinwen, WANG Kaimin, XIAO Hong, LI Aiwu, ZHANG Jiaquan. Progress and Perspective of Functioned Continuous Casting Tundish Through Heating and Temperature Control[J]. 金属学报, 2021, 57(10): 1229-1245.
[4] Chuansong WU, Hao SU, Lei SHI. Numerical Simulation of Heat Generation, Heat Transfer and Material Flow in Friction Stir Welding[J]. 金属学报, 2018, 54(2): 265-277.
[5] Shoumei XIONG, Jinglian DU, Zhipeng GUO, Manhong YANG, Mengwu WU, Cheng BI, Yongyou CAO. Characterization and Modeling Study on Interfacial Heat Transfer Behavior and Solidified Microstructure of Die Cast Magnesium Alloys[J]. 金属学报, 2018, 54(2): 174-192.
[6] Xiaoyu CHONG, Guangchi WANG, Jun DU, Yehua JIANG, Jing FENG. Numerical Simulation of Temperature Field and Thermal Stress in ZTAp/HCCI Composites DuringSolidification Process[J]. 金属学报, 2018, 54(2): 314-324.
[7] Bin XU,Qingxian HU,Shujun CHEN,Fan JIANG,Xiaoli WANG. NUMERICAL SIMULATION OF DYNAMIC BEHAVIOR OF KEYHOLE AND MOLTEN POOL AT K-PAW QUASI STEADY PROCESS[J]. 金属学报, 2016, 52(7): 804-810.
[8] Xiaoxia JIAN,Chuansong WU. INFLUENCE OF Fe VAPOUR ON WELD POOL BEHAVIOR OF PLASMA ARC WELDING[J]. 金属学报, 2016, 52(11): 1467-1476.
[9] Heng SHAO,Yan LI,Hai NAN,Qingyan XU. RESEARCH ON THE INTERFACIAL HEAT TRANSFER COEFFECIENT BETWEEN CASTING AND CERAMIC SHELL IN INVESTMENT CASTING PROCESS OF Ti6Al4V ALLOY[J]. 金属学报, 2015, 51(8): 976-984.
[10] Guoxiang XU, Weiwei ZHANG, Peng LIU, Baoshuai DU. NUMERICAL ANALYSIS OF FLUID FLOW IN LASER+GMAW HYBRID WELDING[J]. 金属学报, 2015, 51(6): 713-723.
[11] Yongyou CAO, Shoumei XIONG, Zhipeng GUO. DEVELOPMENT OF AN INVERSE HEAT TRANSFER MODEL BETWEEN MELT AND SHOT SLEEVE AND ITS APPLICATION IN HIGH PRESSURE DIE CASTING PROCESS[J]. 金属学报, 2015, 51(6): 745-752.
[12] WANG Xinxin, FAN Ding, HUANG Jiankang, HUANG Yong. NUMERICAL SIMULATION OF HEAT TRANSFER AND FLUID FLOW IN DOUBLE ELECTRODES TIG ARC-WELD POOL[J]. 金属学报, 2015, 51(2): 178-190.
[13] ZHANG Gang, SHI Yu, LI Chunkai, HUANG Jiankang, FAN Ding. RESEARCH ON THE CORRELATION BETWEEN THE STATUS OF THREE-DIMENSIONAL WELD POOL SURFACE AND WELD PENETRATION IN TIG WELDING[J]. 金属学报, 2014, 50(8): 995-1002.
[14] LI Yan, FENG Yanhui, ZHANG Xinxin, WU Chuansong. A DYNAMIC HEAT SOURCE MODEL WITH RESPECT TO KEYHOLE EVOLUTION IN PLASMA ARC WELDING[J]. 金属学报, 2013, 49(7): 804-810.
[15] CHENG Baisong, XIAO Namin, LI Dianzhong, LI Yiyi. SENSITIVITY ANALYSIS OF THE EFFECT OF INTERFACIAL HEAT TRANSFER COEFFICIENT ON DISTORTION SIMULATION DURING QUENCHING[J]. 金属学报, 2012, 48(6): 696-702.
No Suggested Reading articles found!