Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (11): 1281-1289    DOI: 10.3724/SP.J.1037.2012.00084
Current Issue | Archive | Adv Search |
EFFECT OF Cu ON MICROSTRUCTURE FORMING AND REFINING OF WELD METAL IN 690 MPa GRADE HSLA STEEL
PENG Yun1), WANG Aihua1, 2),  XIAO Hongjun1), TIAN Zhiling1)
1) State Key Laboratory of Advanced Steel Processes and Products, Central Iron & Steel Research Institute, Beijing 100081
2) Department of Mechanical Engineering, Chengde Petroleum College, Chengde 06700
Cite this article: 

PENG Yun WANG Aihua XIAO Hongjun TIAN Zhiling. EFFECT OF Cu ON MICROSTRUCTURE FORMING AND REFINING OF WELD METAL IN 690 MPa GRADE HSLA STEEL. Acta Metall Sin, 2012, 48(11): 1281-1289.

Download:  PDF(1079KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of Cu on microstructure transformation and microstructure refining of the weld metal of 690 MPa grade HSLA steel was investigated by OM, TEM, EBSD and thermal expansion instrument, and the mechanism of microstructure refining was discussed. Experimental results indicate that microstructure of weld metal is composed of granular bainite, lath bainite and residual austenite. The addition of Cu content from 0.24% to 0.53% in weld metal can decrease phase transition temperature, which induces the reduction of martensite-austenite (M/A) amount from 0.62% to 0.31%, the variation of M/A shape from small bulk and bar to granular shape, the increase of residual austenite amount, and the remarkable refining of microstructure. The increase of Cu content from 0.24% to 0.53% results in the decrease of the mean size of lath block from 2.18 to 1.99 μm, the decrease of the width of lath from 0.39 to 0.36 μm, and the increase of the amount of large angle boundary, which can inhibit crack propagation, from 68.5% to 71.0%. Analysis indicates that Cu can decrease phase transition temperature, increase the stability of austenite, raise the pontential difference between ferrite free energy (Gα) and austenite free energy (Gγ), reduce the critical size of crystal nucleation. Meanwhile, low phase transition temperature can retard the diffusion rate of carbon atom and slower the growth rate of crystal grains. These factors result in the refining of substructure.

Key words:  HSLA steel      weld metal      phase transition temperature      microstructure transformation      microstructure refining     
Received:  20 February 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00084     OR     https://www.ams.org.cn/EN/Y2012/V48/I11/1281

[1] Li S B, Zhang J X. Dev Appl Mater, 2001; 16(6): 39

(李少兵, 张俊旭. 材料开发与应用, 2001; 16(6): 39)

[2] Montemarano T W. J Ship Prod, 1986; 2: 145

[3] Wang S C, Kao P. J Mater Sci, 1993; 28: 5169

[4] Thompson S W, Krauss G. Metall Trans, 1996; 27A: 1573

[5] Ren H P, Liu Z C, Wang H Y, Guo F L. Trans Mater Heat Treat, 2007; 28(suppl): 119

(任慧平, 刘宗昌, 王海燕, 郭凤莲. 材料热处理学报, 2007; 28(增刊): 119)

[6] Avazkonandeh M H, Haddad M, Haerian A. Mater Des, 2009; 30: 1902

[7] Babu S S. Curr Opin Solid State Mater Sci, 2004; 8: 67

[8] Farrar R A, Harrison P L. J Mater Sci, 1987; 22: 12

[9] Wang W, Liu S. Weld J, 2002; 81(7): 132

[10] Widgery D J. Met Constr, 1978; 10: 480

[11] Shackleton D. British Weld J, 1967; 1: 592

[12] Morito S, Tanaka H, Konishi H, Furuhara T, Maki T. Acta Mater, 2003; 6: 1789

[13] Singh S B, Bhadeshia H K. Mater Sci Eng, 1998; A245: 72

[14] Xue G, Zhang J H, Yao R G. China Weld, 2007; 16(1): 31

[15] Li S B, Zhang J X, Zhu B K. Weld Join, 2005; (11): 27

(李少兵, 张俊旭, 朱炳坤. 焊接, 2005; (11): 27)

[16] Essouni M, Beaven P A. Mater Sci Eng, 1990; S130: 173

[17] Hehemann A F, Kinsman K, Aaronson H I. Metall Trans, 1972; 5: 1077

[18] Yi H L, Ma Q S, Du L X, Lin X H, Wang G D. Mater Mech Eng, 2009; 33(6): 37

(衣海龙, 麻庆申, 杜林秀, 刘相华, 王国栋. 机械工程学报, 2009; 33(6): 37)

[19] Song W X. Metallography. Beijing: Metallurgy Industry Press, 2008: 374

(宋微锡. 金属学. 北京: 冶金工业出版社, 2008: 374)

[20] Gao X L, Fu G Q, Deng Z Y, Lin G M, Zhu M Y. Chin JProcess Eng, 2010; 10: 998

(高新亮, 付贵勤, 邓志银, 林光铭, 朱苗勇. 过程工程学报, 2010; 10: 998)

[21] Onck P R, Andrews E W, Gibson L J. Int J Mech Sci, 2001; 43: 681

[22] Zhang Y Q, Zhang R J, Su H, Li L. Iron Steel, 2003; 38: 45

(张永权, 张荣久, 苏航, 李丽. 钢铁, 2003; 38: 45)

[23] Hwang B, Kin Y G, Lee S, Kim Y M, Kim N J, Yoo J Y. Metall Mater Trans, 2005; 36A: 2107

[24] Zhao L, Zhang X D, Chen W Z. Acta Metall Sin, 2005; 41: 392

(赵 琳, 张旭东, 陈武柱. 金属学报, 2005; 41: 392)

[25] Bonnevie E, Ferri`ere G, Ikhlef A. Mater Sci Eng, 2004; A385: 352

[26] Davis C L, King J E. Mater Sci Technol, 1993; 9: 8

[27] Ju D C, Zhu P X, Yan H C, Liu J Q. Metall Collect, 2008; (2): 41

(居殿春, 竺培显, 颜慧成, 刘家琪. 冶金丛刊, 2008; (2): 41)

[28] Cui Z Q. Metallography and Heat Treatment. Beijing: China Machine Press, 1999: 39

(崔忠圻. 金属学与热处理. 北京: 机械工业出版社, 1999: 39)

[29] Fang H S, Wang J J, Yang Z G, Li C M, Bo X Z, Zheng Y K. Bainite Transformation. Beijing: Science Press, 1999: 370

(方鸿生, 王家军, 杨志刚, 李春明, 薄详正, 郑燕康. 贝氏体相变.北京: 科学出版社, 1999: 370)

[30] Xu Z, Zhao L C. Transformation Theory of Metal in Solid. Beijing: Science Press, 2004: 120

(徐 洲, 赵连城. 金属固态相变原理. 北京: 科学出版社, 2004: 120)

[31] Diazfuentes M, Izamendia A, Gutierrez I. Metall Mater Trans, 2003; 34A: 2005

[32] Sa S Y, Wang P. Chin J Nonferrous Met, 2010; 20(Spec.): 429

(撒世勇, 王平. 中国有色金属学报, 2010; 20(特刊): 429)

[1] DU Yubin, HU Xiaofeng, ZHANG Shouqing, SONG Yuanyuan, JIANG Haichang, RONG Lijian. Microstructure and Mechanical Properties of HSLA Steel Containing 1.4%Cu[J]. 金属学报, 2020, 56(10): 1343-1354.
[2] Xiaodong LIN,Qunjia PENG,En-Hou HAN,Wei KE. Effect of Annealing on Microstructure of Thermally Aged 308L Stainless Steel Weld Metal[J]. 金属学报, 2019, 55(5): 555-565.
[3] Liming DONG,Li YANG,Jun DAI,Yu ZHANG,Xuelin WANG,Chengjia SHANG. Effect of Mn, Ni, Mo Contents on Microstructure Transition and Low Temperature Toughness of Weld Metal for K65 Hot Bending Pipe[J]. 金属学报, 2017, 53(6): 657-668.
[4] Fengyu SONG,Yanmei LI,Ping WANG,Fuxian ZHU. EFFECTS OF HEAT INPUT ON THE MICROSTRUC-TURE AND IMPACT TOUGHNESS OF WELD METAL PROCESSED BY A NEW FLUXNOVEL FLUX CORED WIRE WELD[J]. 金属学报, 2016, 52(7): 890-896.
[5] Xuelin WANG,Liming DONG,Weiwei YANG,Yu ZHANG,Xuemin WANG,Chengjia SHANG. EFFECT OF Mn, Ni, Mo PROPORTION ON MICRO-STRUCTURE AND MECHANICAL PROPERTIESOF WELD METAL OF K65 PIPELINE STEEL[J]. 金属学报, 2016, 52(6): 649-660.
[6] MO Wenlin, ZHANG Xu, LU Shanping, LI Dianzhong, LI Yiyi. EFFECT OF Nb CONTENT ON MICROSTRUCTURE, WELDING DEFECTS AND MECHANICAL PROPERTIES OF NiCrFe-7 WELD METAL[J]. 金属学报, 2015, 51(2): 230-238.
[7] GAO Guhui, GUI Xiaolu, AN Baifeng, TAN Zhunli, BAI Bingzhe, WENG Yuqing. EFFECT OF FINISH COOLING TEMPERATURE ON MICROSTRUCTURE AND LOW TEMPERATURE TOUGHNESS OF Mn-SERIES ULTRA-LOW CARBON HIGH STRENGTH LOW ALLOYED STEEL[J]. 金属学报, 2015, 51(1): 21-30.
[8] WU Si, LI Xiucheng, ZHANG Juan, SHANG Chengjia. EFFECT OF Nb ON TRANSFORMATION AND MICROSTRUCTURE REFINEMENT IN MEDIUM CARBON STEEL[J]. 金属学报, 2014, 50(4): 400-408.
[9] LU Yanli, MU Hong, HOU Huaxin, CHEN Zheng. PHASE FIELD CRYSTAL SIMULATION FOR THE PREMELTING AND MELTING OF GRAIN BOUNDARY[J]. 金属学报, 2013, 49(3): 358-364.
[10] YANG Chenggong, SHAN Jiguo, REN Jialie. PHASE TRANSFORMATION TEMPERATURE CONTROL OF WELD METAL OF LASER WELDED TiNi SHAPE MEMORY ALLOY JOINT[J]. 金属学报, 2013, 49(2): 199-206.
[11] YANG Chenggong, SHAN Jiguo, REN Jialie. STUDY ON SHAPE RECOVERY TEMPERATURE OF TiNi ALLOY LASER WELD JOINT[J]. 金属学报, 2012, 48(5): 513-518.
[12] WEI Shitong LU Shanping HE Guangzhong ZHAO Xu LI Dianzhong LI Yiyi . EFFECTS OF HEAT TREATMENT ON THE MICROSTRUCTURE AND MECHANICAL PROPERTY OF WELD METAL WITH Nb ADDITION[J]. 金属学报, 2009, 45(9): 1063-1069.
[13] TAO Peng ZHANG Chi YANG Zhigang TAKEDA Hiroyuki. EVOLUTION OF SECOND PHASE IN 2.25Cr-1Mo-0.25V STEEL WELD METAL DURING HIGH TEMPERATURE TEMPERING[J]. 金属学报, 2009, 45(1): 51-57.
[14] ZHANG Ji; ZHANG Zhihong; SHI Jiandong; ZOU Dunxu; ZHONG Zengyong (Department of Superalloys; Central Iron and Steel Research Institute; Beijing 100081)Correspondent: ZHANG Ji; Doctor; Tel. (010)62181009; Fax: (010)62172725;E-mail: htmrd@public. bta.net.cn. TRANSFORMATION MECHANISM OF FINE FULLY LAMELLAR MICROSTRUCTURE IN TiAl ALLOYS[J]. 金属学报, 1998, 34(9): 919-922.
[15] XING Li; KE Liming (Nanchang Institute of Aero-Technology; Nanchang 330034). HYDROGEN INDUCED FRACTURE IN WELD METAL OF FERRITE-AUSTENITE DUPLEX STAINLESS STEEL[J]. 金属学报, 1997, 33(3): 297-303.
No Suggested Reading articles found!