Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (11): 1372-1377    DOI: 10.3724/SP.J.1037.2011.00309
论文 Current Issue | Archive | Adv Search |
CDM MODELING OF CREEP BEHAVIOR OF T/P91 STEEL UNDER HIGH STRESSES  
CHEN Yunxiang1, 2), YAN Wei1), HU Ping1, 2), SHAN Yiyin1), YANG Ke1)
1) Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) Graduate School of Chinese Academy of Sciences, Beijing 100049
Cite this article: 

CHEN Yunxiang YAN Wei HU Ping SHAN Yiyin YANG Ke. CDM MODELING OF CREEP BEHAVIOR OF T/P91 STEEL UNDER HIGH STRESSES  . Acta Metall Sin, 2011, 47(11): 1372-1377.

Download:  PDF(659KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  For safe use of the equipments in power plants, creep life prediction of the material served at high temperature is an important issue. With the purpose of the existing problems in overestimation of creep strengths, it is essential to analyze the creep mechanism and the creep damage to material in serving. In the present work, through analysis on creep curves of the T/P91 thermal resistant steel served in the super critical steam conditioned thermal power plants, the creep mechanism and the creep damage of T/P91 steel during creeping at 600℃ were discussed, and CDM (continuum damage mechanics) model established based on the physical nature was used to simulate the creep curves of T/P91 steel under high stresses. The modeled creep curves are good in agreement with the experimental data.
Key words:  T/P91 steel      creep mechanism      creep damage      CDM model     
Received:  16 May 2011     
Fund: 

Supported by National Basic Research Program of China (Nos.2008CB717802 and 2010CB630800), High-tech Research Program of ITER of China (No. 2009GB109002) and CAS Knowledge Innovation Project of Major Projects (No.{\footnotesize\it KJCX2--YW--N35})

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00309     OR     https://www.ams.org.cn/EN/Y2011/V47/I11/1372

[1] Vaillant J C, Vandenberghe B, Hahn B, Heuser, Jochum C. Int J Pressure Vessel Pip, 2008; 85: 38

[2] Orlova A, Bursik J, Kucharova K, Sklenicka V. Mater Sci Eng, 1998; A245: 39

[3] Keller C, Margulies M M, Hadjem-Hamouche M, Guillot I. Mater Sci Eng, 2010; A527: 6758

[4] Larson F R, Miller J. Trans ASM, 1952: 74

[5] Tu S D, Xuan F F,WangWZ. Acta Metall Sin, 2009; 45: 781

(涂善东, 轩福负, 王卫泽. 金属学报, 2009; 45: 781)

[6] Kimura K, Toda Y, Kushima H, Sawada K. Int J Pressure Vessel Pip, 2010; 87: 282

[7] Hasegawa T, Abe Y R, Tomita Y, Maruyama N, Sugiyama M. ISIJ Int, 2001; 41: 922

[8] Dyson B F. J Pressure Vessel Technol, 2000; 22: 81

[9] Hyde T H, Becker A A, Sun W, Williams. Int J Pressure Vessel Pip, 2006; 83: 853

[10] Petry C, Lindet G. Int J Pressure Vessel Pip, 2009; 86: 486

[11] Mustata R, Hayhurst D R. Int J Pressure Vessel Pip, 2005; 82: 363

[12] Yin Y F, Faulkner R G. Mater Sci Technol, 2005; 21: 1239

[13] Yin Y F, Faulkner R G. Mater Sci Technol, 2006; 22: 929

[14] Yin Y F, Faulkner R G. New Developments on Metallurgy and Applications of High Strength Steels. Warrendale, PA: TMS, 2008: 283

[15] Zhang J S. High Temperature Deformation and Fracture of Materials. Beijing: Science Press, 2010: 1

[16] Kachanov L M. Izv Akad Nauk SSSR Ser Fiz, 1958; 8: 26

[17] Rabotnov Y N. Creep of Structural Elements. Moskva: Nauka, 1966: 1

[18] Ion J C, Barbosa A, Ashby M F, Dyson B F, McLean M. The Modelling of Creep for Engineering Design (NPL–DMA(A)–115). London: British Library Document Supply Centre, 1986

[19] Dimmler G, Weinert P, Cerjak H. Int J Pressure Vessel Pip, 2008; 85: 55

[20] Yavari P, Langdon T G. Acta Metall, 1982; 30: 2181

[21] Nabarro F R N. Metall Mater Trans, 2010; 41A: 159

[22] Spigarelli S, Cerri E, Bianchi P, Evangelista E. Mater Sci Technol, 1999; 15: 1433

[23] Kloc L, Skienicka V, Ventruba J. Mater Sci Eng, 2001; A319–321: 774

[24] Kimura K, Kushima H, Sawada K. Mater Sci Eng, 2009; A510–511: 58

[25] Spigarelli S, Kloc L, Bontempi P. Scr Mater, 1997; 37: 399

[26] Lee L S, Armaki H G, Maruyama K, Muraki T, Asahi H. Mater Sci Eng, 2006; A428: 270

[27] Hasegawa T, Abe Y R, Tomita Y. ISIJ Int, 2001; 41: 922

[28] Paul V T, Saroja S, Vijayalakshmi M. J Nucl Mater, 2008; 378: 273

[29] Hald J. Int J Pressure Vessel Pip, 2008; 85: 30

[30] Sawada K, Kushima H, Kimura K, Tabuchi M. ISIJ Int, 2007; 47: 733

[31] Yong Q L. Secondary Phases in Steels. Beijing: Metallurgical Industry Press, 2006: 1

(雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 1)
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] PENG Zichao, LIU Peiyuan, WANG Xuqing, LUO Xuejun, LIU Jian, ZOU Jinwen. Creep Behavior of FGH96 Superalloy at Different Service Conditions[J]. 金属学报, 2022, 58(5): 673-682.
[3] Wenshu TANG,Junfeng XIAO,Yongjun LI,Jiong ZHANG,Sifeng GAO,Qing NAN. Effect of Re-Heat Rejuvenation Treatment on γ′ Microstructure of Directionally SolidifiedSuperalloy Damaged by Creep[J]. 金属学报, 2019, 55(5): 601-610.
[4] XU Ling, CHU Zhaokuang, CUI Chuanyong, GU Yuefeng, SUN Xiaofeng. CREEP MECHANISM OF A Ni-Co BASE WROUGHT SUPERALLOY[J]. 金属学报, 2013, 49(7): 863-870.
[5] Guo-Dong ZHANG. Finite Element Simulation for Welding Residual Stress and Creep Damage of Welded Joint[J]. 金属学报, 2008, 44(7): 848-852 .
[6] YUE Zhufeng. Finite Element Analysis of the Creep Damage IndentationTesting with Flat Indenter[J]. 金属学报, 2005, 41(1): 15-.
[7] YUE Zhufeng;LU Zhenzhou;ZHENG Changqing(Northwestern Polytechnical University;Xi'an 710072). THE CREEP─DAMAGE BEHAVIOUR FOR SINGLE CRYSTAL NICKEL-BASE SUPERALLOY[J]. 金属学报, 1995, 31(8): 370-375.
No Suggested Reading articles found!