|
|
Research Progress on Anode Materials and Interfacial Chemistry for Rechargeable Magnesium Batteries |
WEN Tiantian1,2, YUE Jili1,2, XIONG Fangyu1,2, YUAN Yuan1,2, HUANG Guangsheng1,2( ), WANG Jingfeng1,2, PAN Fusheng1,2 |
1 School of Materials Science and Engineering, Chongqing University, Chongqing 400044, China 2 National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China |
|
Cite this article:
WEN Tiantian, YUE Jili, XIONG Fangyu, YUAN Yuan, HUANG Guangsheng, WANG Jingfeng, PAN Fusheng. Research Progress on Anode Materials and Interfacial Chemistry for Rechargeable Magnesium Batteries. Acta Metall Sin, 2025, 61(3): 437-454.
|
Abstract Rechargeable magnesium batteries have emerged as highly promising alternatives in the field of ion batteries, owing to their excellent electrochemical performance, abundance of magnesium resources, and uniform deposition of magnesium. However, challenges such as interface passivation, volume expansion, and uneven stripping/plating of anode materials persist in impeding the commercialization process of rechargeable magnesium batteries. Despite significant progress in exploring novel anode materials and interfacial chemical regulation strategies, developing anode materials that combine high energy density, high power density, excellent stability, and extremely long cycle life continues to pose numerous challenges. This study comprehensively and systematically reviewed the latest research on anode materials and interface regulations for rechargeable magnesium batteries. The influence of material composition, microstructure, and surface/interface structure on electrochemical properties and their underlying mechanisms were analyzed, along with the prospects for the future development and design of anode materials for magnesium batteries and interface regulation.
|
Received: 25 October 2024
|
|
Fund: National Natural Science Foundation of China(U23A20555);Chongqing Technology Innovation and Application Development Project(2024TIAD-KPX0003) |
Corresponding Authors:
HUANG Guangsheng, professor, Tel: (023)65102821, E-mail: gshuang@cqu.edu.cn
|
1 |
Zhu G Z, Tian X, Tai H C, et al. Rechargeable Na/Cl2 and Li/Cl2 batteries [J]. Nature, 2021, 596: 525
|
2 |
Han G, Lu Y F, Jia H X, et al. Magnesium-based energy materials: Progress, challenges, and perspectives [J]. J. Magnes. Alloy., 2023, 11: 3896
|
3 |
Liu D Y, Wu B B, Xu Y B, et al. Controlled large-area lithium deposition to reduce swelling of high-energy lithium metal pouch cells in liquid electrolytes [J]. Nat. Energy, 2024, 9: 559
|
4 |
Zhang H, Qiao L X, Armand M. Organic electrolyte design for rechargeable batteries: From lithium to magnesium [J]. Angew. Chem. Int. Ed., 2022, 61: e202214054
|
5 |
Wen T T, Xiao H, Tan S S, et al. Interfacial chemistry of anode/electrolyte interface for rechargeable magnesium batteries [J]. J. Magnes. Alloy., 2024, 12: 2647
|
6 |
Li Q, Sun X, Luo Q, et al. Regulation of hydrogen storage phase and its interface in magnesium-based materials for hydrogen storage performance [J]. Acta Metall. Sin., 2023, 59: 349
doi: 10.11900/0412.1961.2022.00480
|
|
李 谦, 孙 璇, 罗 群 等. 镁基材料中储氢相及其界面与储氢性能的调控 [J]. 金属学报, 2023, 59: 349
|
7 |
Yang Y, Xiong X M, Chen J, et al. Research advances of magnesium and magnesium alloys worldwide in 2022 [J]. J. Magnes. Alloy., 2023, 11: 2611
|
8 |
Wang D, Zhang Z Y, Hao Y, et al. Challenges and progress in rechargeable magnesium‐ion batteries: Materials, interfaces, and devices [J]. Adv. Funct. Mater., 2024, 34: 2410406
|
9 |
Wang Z T, Deng R R, Li R, et al. Review of research on anode materials for secondary magnesium batteries [J]. Chin. J. Rare Met., 2024, 48: 79
|
|
王中霆, 邓容锐, 李 荣 等. 镁二次电池负极材料的研究综述 [J]. 稀有金属, 2024, 48: 79
|
10 |
Li Z, Yao Y Y, Li B F, et al. Rechargeable magnesium batteries: Development, opportunities and challenges [J]. Chin. J. Nonferrous Met., 2021, 31: 3192
|
|
李 钊, 姚赢赢, 李博飞 等. 可充镁电池: 发展、机遇与挑战 [J]. 中国有色金属学报, 2021, 31: 3192
|
11 |
Xiao J H, Zhao Y X, Fan H Y, et al. Research progress on rechargeable magnesium/sulfur battery [J]. J. Chin. Ceram. Soc., 2020, 48: 963
|
|
肖建华, 赵宇星, 范海燕 等. 镁硫二次电池研究进展 [J]. 硅酸盐学报, 2020, 48: 963
|
12 |
Davidson R, Verma A, Santos D, et al. Formation of magnesium dendrites during electrodeposition [J]. ACS Energy Lett., 2019, 4: 375
doi: 10.1021/acsenergylett.8b02470
|
13 |
Kwak J H, Jeoun Y, Oh S H, et al. Operando visualization of morphological evolution in Mg metal anode: Insight into dendrite suppression for stable Mg metal batteries [J]. ACS Energy Lett., 2022, 7: 162
|
14 |
Lim H D, Kim D H, Park S, et al. Magnesiophilic graphitic carbon nanosubstrate for highly efficient and fast-rechargeable Mg metal batteries [J]. ACS Appl. Mater. Interfaces, 2019, 11: 38754
|
15 |
Wan B X, Dou H L, Zhao X L, et al. Three-dimensional magnesiophilic scaffolds for reduced passivation toward high-rate Mg metal anodes in a noncorrosive electrolyte [J]. ACS Appl. Mater. Interfaces, 2020, 12: 28298
|
16 |
Shen T, Luo C Z, Hao Y, et al. Magnesiophilic interface of 3D MoSe2 for reduced Mg anode overpotential [J]. Front. Chem., 2020, 8: 459
|
17 |
Bae J, Park H, Guo X L, et al. High-performance magnesium metal batteries via switching the passivation film into a solid electrolyte interphase [J]. Energy Environ. Sci., 2021, 14: 4391
|
18 |
Wang G X, Liu X, Shi H C, et al. Achieving planar electroplating/stripping behavior of magnesium metal anode for a practical magnesium battery [J]. ACS Energy Lett., 2024, 9: 48
|
19 |
Wen T T, Deng Y J, Qu B H, et al. Re-envisioning the key factors of magnesium metal anodes for rechargeable magnesium batteries [J]. ACS Energy Lett., 2023, 8: 4848
|
20 |
Davidson R, Verma A, Santos D, et al. Mapping mechanisms and growth regimes of magnesium electrodeposition at high current densities [J]. Mater. Horiz., 2020, 7: 843
|
21 |
Liu X, Du A B, Guo Z Y, et al. Uneven stripping behavior, an unheeded killer of Mg anodes [J]. Adv. Mater., 2022, 34: 2201886
|
22 |
Tian J, Lu H H, Zhang W G, et al. An effective rolling process of magnesium alloys for suppressing edge cracks: Width-limited rolling [J]. J. Magnes. Alloy., 2022, 10: 2193
|
23 |
Pan F S, Jiang B. Development and application of plastic processing technologies of magnesium alloys [J]. Acta Metall. Sin., 2021, 57: 1362
doi: 10.11900/0412.1961.2021.00349
|
|
潘复生, 蒋 斌. 镁合金塑性加工技术发展及应用 [J]. 金属学报, 2021, 57: 1362
doi: 10.11900/0412.1961.2021.00349
|
24 |
Mandai T, Somekawa H. Ultrathin magnesium metal anode—An essential component for high-energy-density magnesium battery materialization [J]. Batter. Supercaps, 2022, 5: e202200153
|
25 |
Wang L, Welborn S S, Kumar H, et al. High-rate and long cycle-life alloy-type magnesium-ion battery anode enabled through (De)magnesiation-induced near-room-temperature solid-liquid phase transformation [J]. Adv. Energy Mater., 2019, 9: 1902086
|
26 |
Wang M C, Yuwono J A, Vasudevan V, et al. Atomistic mechanisms of Mg insertion reactions in group XIV anodes for Mg-ion batteries [J]. ACS Appl. Mater. Interfaces, 2019, 11: 774
|
27 |
Yaghoobnejad Asl H, Fu J T, Kumar H, et al. In situ dealloying of bulk Mg2Sn in Mg-ion half cell as an effective route to nanostructured sn for high performance Mg-ion battery anodes [J]. Chem. Mater., 2018, 30: 1815
|
28 |
Nacimiento F, Cabello M, Pérez-Vicente C, et al. On the mechanism of magnesium storage in micro- and nano-particulate tin battery electrodes [J]. Nanomaterials, 2018, 8: 501
|
29 |
Arthur T S, Singh N, Matsui M. Electrodeposited Bi, Sb and Bi1 - x Sb x alloys as anodes for Mg-ion batteries [J]. Electrochem. Commun., 2012, 16: 103
|
30 |
Sibari A, Marjaoui A, Lakhal M, et al. Phosphorene as a promising anode material for (Li/Na/Mg)-ion batteries: A first-principle study [J]. Sol. Energy Mater. Sol. Cells, 2018, 180: 253
|
31 |
Nguyen G T H, Nguyen D T, Song S W. Unveiling the roles of formation process in improving cycling performance of magnesium stannide composite anode for magnesium-ion batteries [J]. Adv. Mater. Interfaces, 2018, 5: 1801039
|
32 |
Niu J Z, Zhang Z H, Aurbach D. Alloy anode materials for rechargeable Mg Ion batteries [J]. Adv. Energy Mater., 2020, 10: 2000697
|
33 |
Hembram K P S S, Jung H, Yeo B C, et al. A comparative first-principles study of the lithiation, sodiation, and magnesiation of black phosphorus for Li-, Na-, and Mg-ion batteries [J]. Phys. Chem. Chem. Phys., 2016, 18: 21391
doi: 10.1039/c6cp02049f
pmid: 27425818
|
34 |
Shao Y Y, Gu M, Li X L, et al. Highly reversible Mg insertion in nanostructured Bi for Mg Ion batteries [J]. Nano Lett., 2014, 14: 255
doi: 10.1021/nl403874y
pmid: 24279987
|
35 |
Wang L, Ng A, Family R, et al. Liquid eutectic gallium-indium as a magnesium-ion battery anode with ultralong cycle life enabled by liquid-solid phase transformation during (de)magnesiation at room temperature [J]. J. Mater. Chem., 2024, 12A: 27435
|
36 |
Zheng X W, Yuan Y, Gu D C, et al. Self-healable, high-stability anode for rechargeable magnesium batteries realized by graphene-confined gallium metal [J]. Nano Lett., 2024, 24: 10734
|
37 |
Jin W, Wang Z G. Facet-dependent magnesiation behavior of α-Sn as an anode for magnesium ion batteries [J]. RSC Adv., 2017, 7: 44547
|
38 |
Legrain F, Malyi O I, Persson C, et al. Comparison of alpha and beta tin for lithium, sodium, and magnesium storage: An ab initio study including phonon contributions [J]. J. Chem. Phys., 2015, 143: 204701
|
39 |
Nguyen D T, Tran X M, Kang J, et al. Magnesium storage performance and surface film formation behavior of tin anode material [J]. ChemElectroChem, 2016, 3: 1813
|
40 |
Jung S C, Han Y K. Fast magnesium ion transport in the Bi/Mg3Bi2 two-phase electrode [J]. J. Phys. Chem., 2018, 122C: 17643
|
41 |
Rajput N N, Qu X H, Sa N Y, et al. The coupling between stability and ion pair formation in magnesium electrolytes from first-principles quantum mechanics and classical molecular dynamics [J]. J. Am. Chem. Soc., 2015, 137: 3411
doi: 10.1021/jacs.5b01004
pmid: 25668289
|
42 |
Seguin T J, Hahn N T, Zavadil K R, et al. Elucidating non-aqueous solvent stability and associated decomposition mechanisms for Mg energy storage applications from first-principles [J]. Front. Chem., 2019, 7: 175
doi: 10.3389/fchem.2019.00175
pmid: 31024883
|
43 |
Zhang J L, Liu J, Wang M, et al. The origin of anode-electrolyte interfacial passivation in rechargeable Mg-metal batteries [J]. Energy Environ. Sci., 2023, 16: 1111
|
44 |
Du Y Y, Chen Y M, Tan S S, et al. Strong solvent coordination effect inducing gradient solid-electrolyte-interphase formation for highly efficient Mg plating/stripping [J]. Energy Storage Mater., 2023, 62: 102939
|
45 |
Cheng M X, Ren W, Zhang D, et al. Efficient single-perfluorinated borate-based electrolytes for rechargeable magnesium batteries [J]. Energy Storage Mater., 2022, 51: 764
|
46 |
Sun Y, Wang Y H, Jiang L W, et al. Non-nucleophilic electrolyte with non-fluorinated hybrid solvents for long-life magnesium metal batteries [J]. Energy Environ. Sci., 2023, 16: 265
|
47 |
Huang X T, Tan S S, Chen J L, et al. Asymmetric SO3CF-3-grafted boron-center anion enables boron-containing interphase for high-performance rechargeable Mg batteries [J]. Adv. Funct. Mater., 2024, 34: 2314146
|
48 |
Tutusaus O, Mohtadi R, Arthur T S, et al. An efficient halogen-free electrolyte for use in rechargeable magnesium batteries [J]. Angew. Chem. Int. Ed., 2015, 54: 7900
doi: 10.1002/anie.201412202
pmid: 26013580
|
49 |
Du A B, Zhang Z H, Qu H T, et al. An efficient organic magnesium borate-based electrolyte with non-nucleophilic characteristics for magnesium-sulfur battery [J]. Energy Environ. Sci., 2017, 10: 2616
|
50 |
Zhao-Karger Z, Gil Bardaji M E, Fuhr O, et al. A new class of non-corrosive, highly efficient electrolytes for rechargeable magnesium batteries [J]. J. Mater. Chem., 2017, 5A: 10815
|
51 |
Zhang D, Wang Y R, Yang Y, et al. Constructing efficient Mg(CF3SO3)2 electrolyte via tailoring solvation and interface chemistry for high-performance rechargeable magnesium batteries [J]. Adv. Energy Mater., 2023, 13: 2301795
|
52 |
Wang H, Feng X F, Chen Y, et al. Reversible electrochemical interface of Mg metal and conventional electrolyte enabled by intermediate adsorption [J]. ACS Energy Lett., 2020, 5: 200
|
53 |
Hu X C, Shen Z Z, Wan J, et al. Insight into interfacial processes and degradation mechanism in magnesium metal batteries [J]. Nano Energy, 2020, 78: 105338
|
54 |
Chen C F, Chen J L, Tan S S, et al. Regulating solvation sheath by introducing multifunctional fluoride boronic esters for highly efficient magnesium stripping/plating [J]. Energy Storage Mater., 2023, 59: 102792
|
55 |
Liu X, Wang G X, Lv Z L, et al. A perspective on uniform plating behavior of Mg metal anode: Diffusion limited theory versus nucleation theory [J]. Adv. Mater., 2024, 36: 2306395
|
56 |
Legrain F, Manzhos S. Aluminum doping improves the energetics of lithium, sodium, and magnesium storage in silicon: A first-principles study [J]. J. Power Sources, 2015, 274: 65
|
57 |
Zhao Q N, Zhao K Q, Han G F, et al. High-capacity, fast-charging and long-life magnesium/black phosphorous composite negative electrode for non-aqueous magnesium battery [J]. Nat. Commun., 2024, 15: 8680
doi: 10.1038/s41467-024-52949-4
pmid: 39375331
|
58 |
Banerjee S, Pati S K. Anodic performance of black phosphorus in magnesium-ion batteries: The significance of Mg-P bond-synergy [J]. Chem. Commun., 2016, 52: 8381
|
59 |
Niu J Z, Gao H, Ma W S, et al. Dual phase enhanced superior electrochemical performance of nanoporous bismuth-tin alloy anodes for magnesium-ion batteries [J]. Energy Storage Mater., 2018, 14: 351
|
60 |
Kitada A, Kang Y, Uchimoto Y, et al. Electrochemical reactivity of magnesium ions with Sn-based binary alloys (Cu-Sn, Pb-Sn, and In-Sn) [J]. ECS Trans., 2014, 58: 75
|
61 |
Song M J, Niu J Z, Yin K B, et al. Self-supporting, eutectic-like, nanoporous biphase bismuth-tin film for high-performance magnesium storage [J]. Nano Res., 2019, 12: 801
|
62 |
Gu D C, Yuan Y, Liu J W, et al. The electrochemical properties of bismuth-antimony-tin alloy anodes for magnesium ion batteries [J]. J. Power Sources, 2022, 548: 232076
|
63 |
Gu D C, Yuan Y, Peng X H, et al. Realizing high-stability anodes for rechargeable magnesium batteries via in situ-formed nanoporous Bi and nanosized Sn [J]. J. Mater. Chem., 2024, 12A: 26890
|
64 |
Peng X H, Yuan Y, Gu D C, et al. Unlocking the power of magnesium batteries: Synergistic effect of InSb-C composites to achieve superior electrochemical performance [J]. Small, 2024, 20: 2400967
|
65 |
Yang G L, Li Y J, Zhang C, et al. In situ formed magnesiophilic sites guiding uniform deposition for stable magnesium metal anodes [J]. Nano Lett., 2022, 22: 9138
|
66 |
Li Y J, Yang G L, Zhang C, et al. Grain-boundary-rich triphasic artificial hybrid interphase toward practical magnesium metal anodes [J]. Adv. Funct. Mater., 2022, 33: 2210639
|
67 |
Chen T N, Sai Gautam G, Canepa P. Ionic transport in potential coating materials for Mg batteries [J]. Chem. Mater., 2019, 31: 8087
doi: 10.1021/acs.chemmater.9b02692
|
68 |
Liu Z, Li Y S, Ji Y Z, et al. Dendrite-free lithium based on lessons learned from lithium and magnesium electrodeposition morphology simulations [J]. Cell Rep. Phys. Sci., 2021, 2: 100294
|
69 |
Zhang S X, Cheng M X, Zhang P, et al. Insights into the stability of magnesium borate salts for rechargeable magnesium batteries from AIMD simulations [J]. Chem. Commun., 2022, 58: 11969
|
70 |
Song Z H, Zhang Z H, Du A B, et al. Uniform magnesium electrodeposition via synergistic coupling of current homogenization, geometric confinement, and chemisorption effect [J]. Adv. Mater., 2021, 33: 2100224
|
71 |
Liang Y L, Feng R J, Yang S Q, et al. Rechargeable Mg batteries with graphene-like MoS2 cathode and ultrasmall Mg nanoparticle anode [J]. Adv. Mater., 2011, 23: 640
|
72 |
Maddegalla A, Mukherjee A, Blázquez J A, et al. AZ31 magnesium alloy foils as thin anodes for rechargeable magnesium batteries [J]. ChemSusChem, 2021, 14: 4690
doi: 10.1002/cssc.202101323
pmid: 34339584
|
73 |
Mandai T, Somekawa H. Metallurgical approach to enhance the electrochemical activity of magnesium anodes for magnesium rechargeable batteries [J]. Chem. Commun., 2020, 56: 12122
|
74 |
Liu H, Tan S S, Wang Z T, et al. Binary Mg-1 at%Gd alloy anode for high-performance rechargeable magnesium batteries [J]. ChemSusChem, 2024, 17: e202301589
|
75 |
Liu H. Effect of alloying elements on electrochemical performance of magnesium anode in magnesium ion battery [D]. Chongqing: Chongqing University, 2022
|
|
刘 晗. 合金元素对镁离子电池镁负极电化学性能的影响 [D]. 重庆: 重庆大学, 2022
|
76 |
Zhang B X, Yue J L, Wang D, et al. Alloy alleviating galvanic corrosion enables uniform Mg deposition with long cycle life [J]. ACS Energy Lett., 2024, 9: 1771
|
77 |
He G, Li Q W, Shen Y L, et al. Flexible amalgam film enables stable lithium metal anodes with high capacities [J]. Angew. Chem. Int. Ed., 2019, 58: 18466
doi: 10.1002/anie.201911800
pmid: 31595629
|
78 |
Liu J J, Hu H, Wu T Q, et al. Tailoring the microstructure of Mg-Al-Sn-RE alloy via friction stir processing and the impact on its electrochemical discharge behaviour as the anode for Mg-air battery [J]. J. Magnes. Alloy., 2024, 12: 1554
|
79 |
Huang X, Dai Q W, Xiang Q, et al. Microstructure design of advanced magnesium-air battery anodes [J]. J. Magnes. Alloy., 2024, 12: 443
|
80 |
Wei C L, Tan L W, Zhang Y C, et al. Highly reversible Mg metal anodes enabled by interfacial liquid metal engineering for high-energy Mg-S batteries [J]. Energy Storage Mater., 2022, 48: 447
|
81 |
Song C, Yuan Y, Gu D C, et al. The evaluation of Mg-Ga compounds as electrode materials for Mg-ion batteries via ab initio simulation [J]. J. Electrochem. Soc., 2021, 168: 110539
|
82 |
Pechberty C, Hagopian A, Ledeuil J B, et al. Alloying electrode coatings towards better magnesium batteries [J]. J. Mater. Chem., 2022, 10A: 12104
|
83 |
Zhao Y M, Du A B, Dong S M, et al. A bismuth-based protective layer for magnesium metal anode in noncorrosive electrolytes [J]. ACS Energy Lett., 2021, 6: 2594
|
84 |
Zhuang Y C, Wu D Z, Wang F, et al. Tailoring a hybrid functional layer for Mg metal anodes in conventional electrolytes with a low overpotential [J]. ACS Appl. Mater. Interfaces, 2022, 14: 47605
|
85 |
Lv R J, Guan X Z, Zhang J H, et al. Enabling Mg metal anodes rechargeable in conventional electrolytes by fast ionic transport interphase [J]. Natl. Sci. Rev., 2020, 7: 333
doi: 10.1093/nsr/nwz157
pmid: 34692049
|
86 |
Yang B P, Xia L Y, Li R, et al. Superior plating/stripping performance through constructing an artificial interphase layer on metallic Mg anode [J]. J. Mater. Sci. Technol., 2023, 157: 154
doi: 10.1016/j.jmst.2023.01.054
|
87 |
Wang Y Q, Cheng F L, Huang Y Z, et al. Vertically-oriented growth of MgMOF layer via heteroepitaxial guidance for highly stable magnesium-metal anode [J]. Energy Storage Mater., 2023, 61: 102911
|
88 |
Zhang Y J, Li J, Zhao W Y, et al. Defect-free metal-organic framework membrane for precise ion/solvent separation toward highly stable magnesium metal anode [J]. Adv. Mater., 2022, 34: 2108114
|
89 |
Li C, Shyamsunder A, Key B, et al. Stabilizing magnesium plating by a low-cost inorganic surface membrane for high-voltage and high-power Mg batteries [J]. Joule, 2023, 7: 2798
|
90 |
Son S B, Gao T, Harvey S P, et al. An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes [J]. Nat. Chem., 2018, 10: 532
|
91 |
Wen T T, Qu B H, Tan S S, et al. Rational design of artificial interphase buffer layer with 3D porous channel for uniform deposition in magnesium metal anodes [J]. Energy Storage Mater., 2023, 55: 816
|
92 |
Wen T T, Tan S S, Li R, et al. Large-scale integration of the ion-reinforced phytic acid layer stabilizing magnesium metal anode [J]. ACS Nano, 2024, 18: 11740
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|