Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (3): 437-454    DOI: 10.11900/0412.1961.2024.00357
Overview Current Issue | Archive | Adv Search |
Research Progress on Anode Materials and Interfacial Chemistry for Rechargeable Magnesium Batteries
WEN Tiantian1,2, YUE Jili1,2, XIONG Fangyu1,2, YUAN Yuan1,2, HUANG Guangsheng1,2(), WANG Jingfeng1,2, PAN Fusheng1,2
1 School of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
2 National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
Cite this article: 

WEN Tiantian, YUE Jili, XIONG Fangyu, YUAN Yuan, HUANG Guangsheng, WANG Jingfeng, PAN Fusheng. Research Progress on Anode Materials and Interfacial Chemistry for Rechargeable Magnesium Batteries. Acta Metall Sin, 2025, 61(3): 437-454.

Download:  HTML  PDF(4115KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Rechargeable magnesium batteries have emerged as highly promising alternatives in the field of ion batteries, owing to their excellent electrochemical performance, abundance of magnesium resources, and uniform deposition of magnesium. However, challenges such as interface passivation, volume expansion, and uneven stripping/plating of anode materials persist in impeding the commercialization process of rechargeable magnesium batteries. Despite significant progress in exploring novel anode materials and interfacial chemical regulation strategies, developing anode materials that combine high energy density, high power density, excellent stability, and extremely long cycle life continues to pose numerous challenges. This study comprehensively and systematically reviewed the latest research on anode materials and interface regulations for rechargeable magnesium batteries. The influence of material composition, microstructure, and surface/interface structure on electrochemical properties and their underlying mechanisms were analyzed, along with the prospects for the future development and design of anode materials for magnesium batteries and interface regulation.

Key words:  rechargeable magnesium battery      anode material      anode-electrolyte interface      regulation strategy     
Received:  25 October 2024     
ZTFLH:  TM911  
Fund: National Natural Science Foundation of China(U23A20555);Chongqing Technology Innovation and Application Development Project(2024TIAD-KPX0003)
Corresponding Authors:  HUANG Guangsheng, professor, Tel: (023)65102821, E-mail: gshuang@cqu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2024.00357     OR     https://www.ams.org.cn/EN/Y2025/V61/I3/437

Fig.1  Dilemmas of Mg anode
(a) passivation of Mg anode[19] (b, c) uneven stripping/plating of Mg anode[20,21] (DLA—diffusion-limited aggregation) (d) machining problem of Mg anode[22,24] (RD—rolling direction)
Fig.2  Representative researches of Mg-Ga alloy anodes
(a) solid-liquid phase transformation and long cycle-life of Mg-Ga system[25]
(b) morphologies of Ga confined by reduced graphene oxide (Ga@rGO) before and after charging process[36]
Fig.3  Passivation mechanisms
(a) bond dissociation energy (BDE) of TFSI-, [Mg+-TFSI-], and [Mg2+-TFSI-][41]
(b) instability of the coordinated solvents[42] (G1—monoglyme, G2—diglyme, G3—triglyme, DMS—dimethyl sulfone, TMS—tetramethylene sulfone, ACN—acetonitrile, Ered—reduction potentials)
(c) binding energy and charge state of solvated structure in electrolytes[43]
Fig.4  Uneven Mg plating/stripping mechanism[55]
(a) schematic of Mg electroplating progress and the standard parameters to guide the diffusion limited theory and the nucleation theory (take the all phenyl complex (APC) electrolyte as an example) (rcrit—critical radius, ηn—overpotential, γ—surface energy, F—Faraday's constant, Vm—molar volume, τSand—Sand's time, iL—limited current, C0—salt concentration in bulk electrolyte, Dambp—ambipolar diffusion coefficient, n—electron transfer number, A—electrode area, L—thickness, μa—anion transference number, μc—cationic transference number, Dc—self-diffusion coefficient of individual cation, Da—self-diffusion coefficient of individual anion, t+—cationic transference number. THF—tetrahydrofuran)
(b) diagram of diffusion-control buffer zone
(c) cross sectional SEM image and schematic of Mg deposit at 10 mA/cm2 in APC electrolyte
(d) Mg plating in glass fiber separator at 5 mA/cm2
Fig.5  Volume expansions
(a) Mg@BP[57] (Mg/black phosphorous composite anode)
(b) Bi-NTs nano structure anode[34] (NTs—nanotubes)
(c) Bi-Sn multiphase alloy anode[59] (d) InSb-10%C anode[64]
Fig.6  Theoretical calculation of adsorption energy and diffusion energy
(a) calculated adsorption energies of Mg atoms onto different Mg and MgIn crystal facets[65]
(b) adsorption models and energies of THF, glyme (DME), G2, and 2-methoxyethylamine (MOEA) molecules on Mg (0001)[51] (SEI—solid electrolyte interphase)
(c) calculated Mg migration energy barriers in bulk Mg3Sb2 and MgCl2[66]
(d) summary of the calculated diffusion barriers of Mg2+ in various inorganic Mg compounds[67]
Fig.7  Phase-field and molecular dynamics (MD) simulation
(a) phase-field simulation morphologies of Li and Mg at different time under a constant potential of 0.1 V[68] (r—distance between the calculate particle and the central particle)
(b) MD snapshots and radial distribution functions of O or N atoms in DME, G2, OTf, and MOEA with respect to Mg2+ in the Mg(OTf)2/DME/G2 and Mg(OTf)2/DME/G2/MOEA electrolytes, and solvation structure analysis of the two electrolyte systems[44] (g(r)—radial distribution function)
(c) representative snapshots of Mg(TFSI)2 and Mg[B(Otfe)4]2 on the Mg surface at various times from AIMD simulations at 750 K[69]
Fig.8  Compositions and structure design of the anode materials
(a) 3D magnesiophilic anode materials[70] (J / J0normalized current density, d / d0—normalized electrode distance, E / E0normalized chemisorption energy, θ—wetting angle)
(b) nano-Mg (N-Mg) nanostructured anode[71]
(c) AZ31 alloy anode[72]
(d) Mg-Gd alloy anode[74]
(e) Mg-Ce alloy anode[76]
Fig.9  SEI fabricated anodes
(a) Mg2Ga5 alloy-type layer[82]
(b) Ga5Mg2-Mg layer[80]
(c) Bi/MgCl2/PTHF (polytetrahydrofuran) SEI layer[84] (ECH—epichlorohydrin)
(d) schematic illustration of the MgMOF@Mg[87] (MOF—metal organic framework)
(e) zeolite-polymer SEI layer[89]
(f) phytic acid (PA) SEI layer[91]
(g) PA-Al SEI layer[92]
1 Zhu G Z, Tian X, Tai H C, et al. Rechargeable Na/Cl2 and Li/Cl2 batteries [J]. Nature, 2021, 596: 525
2 Han G, Lu Y F, Jia H X, et al. Magnesium-based energy materials: Progress, challenges, and perspectives [J]. J. Magnes. Alloy., 2023, 11: 3896
3 Liu D Y, Wu B B, Xu Y B, et al. Controlled large-area lithium deposition to reduce swelling of high-energy lithium metal pouch cells in liquid electrolytes [J]. Nat. Energy, 2024, 9: 559
4 Zhang H, Qiao L X, Armand M. Organic electrolyte design for rechargeable batteries: From lithium to magnesium [J]. Angew. Chem. Int. Ed., 2022, 61: e202214054
5 Wen T T, Xiao H, Tan S S, et al. Interfacial chemistry of anode/electrolyte interface for rechargeable magnesium batteries [J]. J. Magnes. Alloy., 2024, 12: 2647
6 Li Q, Sun X, Luo Q, et al. Regulation of hydrogen storage phase and its interface in magnesium-based materials for hydrogen storage performance [J]. Acta Metall. Sin., 2023, 59: 349
doi: 10.11900/0412.1961.2022.00480
李 谦, 孙 璇, 罗 群 等. 镁基材料中储氢相及其界面与储氢性能的调控 [J]. 金属学报, 2023, 59: 349
7 Yang Y, Xiong X M, Chen J, et al. Research advances of magnesium and magnesium alloys worldwide in 2022 [J]. J. Magnes. Alloy., 2023, 11: 2611
8 Wang D, Zhang Z Y, Hao Y, et al. Challenges and progress in rechargeable magnesium‐ion batteries: Materials, interfaces, and devices [J]. Adv. Funct. Mater., 2024, 34: 2410406
9 Wang Z T, Deng R R, Li R, et al. Review of research on anode materials for secondary magnesium batteries [J]. Chin. J. Rare Met., 2024, 48: 79
王中霆, 邓容锐, 李 荣 等. 镁二次电池负极材料的研究综述 [J]. 稀有金属, 2024, 48: 79
10 Li Z, Yao Y Y, Li B F, et al. Rechargeable magnesium batteries: Development, opportunities and challenges [J]. Chin. J. Nonferrous Met., 2021, 31: 3192
李 钊, 姚赢赢, 李博飞 等. 可充镁电池: 发展、机遇与挑战 [J]. 中国有色金属学报, 2021, 31: 3192
11 Xiao J H, Zhao Y X, Fan H Y, et al. Research progress on rechargeable magnesium/sulfur battery [J]. J. Chin. Ceram. Soc., 2020, 48: 963
肖建华, 赵宇星, 范海燕 等. 镁硫二次电池研究进展 [J]. 硅酸盐学报, 2020, 48: 963
12 Davidson R, Verma A, Santos D, et al. Formation of magnesium dendrites during electrodeposition [J]. ACS Energy Lett., 2019, 4: 375
doi: 10.1021/acsenergylett.8b02470
13 Kwak J H, Jeoun Y, Oh S H, et al. Operando visualization of morphological evolution in Mg metal anode: Insight into dendrite suppression for stable Mg metal batteries [J]. ACS Energy Lett., 2022, 7: 162
14 Lim H D, Kim D H, Park S, et al. Magnesiophilic graphitic carbon nanosubstrate for highly efficient and fast-rechargeable Mg metal batteries [J]. ACS Appl. Mater. Interfaces, 2019, 11: 38754
15 Wan B X, Dou H L, Zhao X L, et al. Three-dimensional magnesiophilic scaffolds for reduced passivation toward high-rate Mg metal anodes in a noncorrosive electrolyte [J]. ACS Appl. Mater. Interfaces, 2020, 12: 28298
16 Shen T, Luo C Z, Hao Y, et al. Magnesiophilic interface of 3D MoSe2 for reduced Mg anode overpotential [J]. Front. Chem., 2020, 8: 459
17 Bae J, Park H, Guo X L, et al. High-performance magnesium metal batteries via switching the passivation film into a solid electrolyte interphase [J]. Energy Environ. Sci., 2021, 14: 4391
18 Wang G X, Liu X, Shi H C, et al. Achieving planar electroplating/stripping behavior of magnesium metal anode for a practical magnesium battery [J]. ACS Energy Lett., 2024, 9: 48
19 Wen T T, Deng Y J, Qu B H, et al. Re-envisioning the key factors of magnesium metal anodes for rechargeable magnesium batteries [J]. ACS Energy Lett., 2023, 8: 4848
20 Davidson R, Verma A, Santos D, et al. Mapping mechanisms and growth regimes of magnesium electrodeposition at high current densities [J]. Mater. Horiz., 2020, 7: 843
21 Liu X, Du A B, Guo Z Y, et al. Uneven stripping behavior, an unheeded killer of Mg anodes [J]. Adv. Mater., 2022, 34: 2201886
22 Tian J, Lu H H, Zhang W G, et al. An effective rolling process of magnesium alloys for suppressing edge cracks: Width-limited rolling [J]. J. Magnes. Alloy., 2022, 10: 2193
23 Pan F S, Jiang B. Development and application of plastic processing technologies of magnesium alloys [J]. Acta Metall. Sin., 2021, 57: 1362
doi: 10.11900/0412.1961.2021.00349
潘复生, 蒋 斌. 镁合金塑性加工技术发展及应用 [J]. 金属学报, 2021, 57: 1362
doi: 10.11900/0412.1961.2021.00349
24 Mandai T, Somekawa H. Ultrathin magnesium metal anode—An essential component for high-energy-density magnesium battery materialization [J]. Batter. Supercaps, 2022, 5: e202200153
25 Wang L, Welborn S S, Kumar H, et al. High-rate and long cycle-life alloy-type magnesium-ion battery anode enabled through (De)magnesiation-induced near-room-temperature solid-liquid phase transformation [J]. Adv. Energy Mater., 2019, 9: 1902086
26 Wang M C, Yuwono J A, Vasudevan V, et al. Atomistic mechanisms of Mg insertion reactions in group XIV anodes for Mg-ion batteries [J]. ACS Appl. Mater. Interfaces, 2019, 11: 774
27 Yaghoobnejad Asl H, Fu J T, Kumar H, et al. In situ dealloying of bulk Mg2Sn in Mg-ion half cell as an effective route to nanostructured sn for high performance Mg-ion battery anodes [J]. Chem. Mater., 2018, 30: 1815
28 Nacimiento F, Cabello M, Pérez-Vicente C, et al. On the mechanism of magnesium storage in micro- and nano-particulate tin battery electrodes [J]. Nanomaterials, 2018, 8: 501
29 Arthur T S, Singh N, Matsui M. Electrodeposited Bi, Sb and Bi1 - x Sb x alloys as anodes for Mg-ion batteries [J]. Electrochem. Commun., 2012, 16: 103
30 Sibari A, Marjaoui A, Lakhal M, et al. Phosphorene as a promising anode material for (Li/Na/Mg)-ion batteries: A first-principle study [J]. Sol. Energy Mater. Sol. Cells, 2018, 180: 253
31 Nguyen G T H, Nguyen D T, Song S W. Unveiling the roles of formation process in improving cycling performance of magnesium stannide composite anode for magnesium-ion batteries [J]. Adv. Mater. Interfaces, 2018, 5: 1801039
32 Niu J Z, Zhang Z H, Aurbach D. Alloy anode materials for rechargeable Mg Ion batteries [J]. Adv. Energy Mater., 2020, 10: 2000697
33 Hembram K P S S, Jung H, Yeo B C, et al. A comparative first-principles study of the lithiation, sodiation, and magnesiation of black phosphorus for Li-, Na-, and Mg-ion batteries [J]. Phys. Chem. Chem. Phys., 2016, 18: 21391
doi: 10.1039/c6cp02049f pmid: 27425818
34 Shao Y Y, Gu M, Li X L, et al. Highly reversible Mg insertion in nanostructured Bi for Mg Ion batteries [J]. Nano Lett., 2014, 14: 255
doi: 10.1021/nl403874y pmid: 24279987
35 Wang L, Ng A, Family R, et al. Liquid eutectic gallium-indium as a magnesium-ion battery anode with ultralong cycle life enabled by liquid-solid phase transformation during (de)magnesiation at room temperature [J]. J. Mater. Chem., 2024, 12A: 27435
36 Zheng X W, Yuan Y, Gu D C, et al. Self-healable, high-stability anode for rechargeable magnesium batteries realized by graphene-confined gallium metal [J]. Nano Lett., 2024, 24: 10734
37 Jin W, Wang Z G. Facet-dependent magnesiation behavior of α-Sn as an anode for magnesium ion batteries [J]. RSC Adv., 2017, 7: 44547
38 Legrain F, Malyi O I, Persson C, et al. Comparison of alpha and beta tin for lithium, sodium, and magnesium storage: An ab initio study including phonon contributions [J]. J. Chem. Phys., 2015, 143: 204701
39 Nguyen D T, Tran X M, Kang J, et al. Magnesium storage performance and surface film formation behavior of tin anode material [J]. ChemElectroChem, 2016, 3: 1813
40 Jung S C, Han Y K. Fast magnesium ion transport in the Bi/Mg3Bi2 two-phase electrode [J]. J. Phys. Chem., 2018, 122C: 17643
41 Rajput N N, Qu X H, Sa N Y, et al. The coupling between stability and ion pair formation in magnesium electrolytes from first-principles quantum mechanics and classical molecular dynamics [J]. J. Am. Chem. Soc., 2015, 137: 3411
doi: 10.1021/jacs.5b01004 pmid: 25668289
42 Seguin T J, Hahn N T, Zavadil K R, et al. Elucidating non-aqueous solvent stability and associated decomposition mechanisms for Mg energy storage applications from first-principles [J]. Front. Chem., 2019, 7: 175
doi: 10.3389/fchem.2019.00175 pmid: 31024883
43 Zhang J L, Liu J, Wang M, et al. The origin of anode-electrolyte interfacial passivation in rechargeable Mg-metal batteries [J]. Energy Environ. Sci., 2023, 16: 1111
44 Du Y Y, Chen Y M, Tan S S, et al. Strong solvent coordination effect inducing gradient solid-electrolyte-interphase formation for highly efficient Mg plating/stripping [J]. Energy Storage Mater., 2023, 62: 102939
45 Cheng M X, Ren W, Zhang D, et al. Efficient single-perfluorinated borate-based electrolytes for rechargeable magnesium batteries [J]. Energy Storage Mater., 2022, 51: 764
46 Sun Y, Wang Y H, Jiang L W, et al. Non-nucleophilic electrolyte with non-fluorinated hybrid solvents for long-life magnesium metal batteries [J]. Energy Environ. Sci., 2023, 16: 265
47 Huang X T, Tan S S, Chen J L, et al. Asymmetric SO3CF-3-grafted boron-center anion enables boron-containing interphase for high-performance rechargeable Mg batteries [J]. Adv. Funct. Mater., 2024, 34: 2314146
48 Tutusaus O, Mohtadi R, Arthur T S, et al. An efficient halogen-free electrolyte for use in rechargeable magnesium batteries [J]. Angew. Chem. Int. Ed., 2015, 54: 7900
doi: 10.1002/anie.201412202 pmid: 26013580
49 Du A B, Zhang Z H, Qu H T, et al. An efficient organic magnesium borate-based electrolyte with non-nucleophilic characteristics for magnesium-sulfur battery [J]. Energy Environ. Sci., 2017, 10: 2616
50 Zhao-Karger Z, Gil Bardaji M E, Fuhr O, et al. A new class of non-corrosive, highly efficient electrolytes for rechargeable magnesium batteries [J]. J. Mater. Chem., 2017, 5A: 10815
51 Zhang D, Wang Y R, Yang Y, et al. Constructing efficient Mg(CF3SO3)2 electrolyte via tailoring solvation and interface chemistry for high-performance rechargeable magnesium batteries [J]. Adv. Energy Mater., 2023, 13: 2301795
52 Wang H, Feng X F, Chen Y, et al. Reversible electrochemical interface of Mg metal and conventional electrolyte enabled by intermediate adsorption [J]. ACS Energy Lett., 2020, 5: 200
53 Hu X C, Shen Z Z, Wan J, et al. Insight into interfacial processes and degradation mechanism in magnesium metal batteries [J]. Nano Energy, 2020, 78: 105338
54 Chen C F, Chen J L, Tan S S, et al. Regulating solvation sheath by introducing multifunctional fluoride boronic esters for highly efficient magnesium stripping/plating [J]. Energy Storage Mater., 2023, 59: 102792
55 Liu X, Wang G X, Lv Z L, et al. A perspective on uniform plating behavior of Mg metal anode: Diffusion limited theory versus nucleation theory [J]. Adv. Mater., 2024, 36: 2306395
56 Legrain F, Manzhos S. Aluminum doping improves the energetics of lithium, sodium, and magnesium storage in silicon: A first-principles study [J]. J. Power Sources, 2015, 274: 65
57 Zhao Q N, Zhao K Q, Han G F, et al. High-capacity, fast-charging and long-life magnesium/black phosphorous composite negative electrode for non-aqueous magnesium battery [J]. Nat. Commun., 2024, 15: 8680
doi: 10.1038/s41467-024-52949-4 pmid: 39375331
58 Banerjee S, Pati S K. Anodic performance of black phosphorus in magnesium-ion batteries: The significance of Mg-P bond-synergy [J]. Chem. Commun., 2016, 52: 8381
59 Niu J Z, Gao H, Ma W S, et al. Dual phase enhanced superior electrochemical performance of nanoporous bismuth-tin alloy anodes for magnesium-ion batteries [J]. Energy Storage Mater., 2018, 14: 351
60 Kitada A, Kang Y, Uchimoto Y, et al. Electrochemical reactivity of magnesium ions with Sn-based binary alloys (Cu-Sn, Pb-Sn, and In-Sn) [J]. ECS Trans., 2014, 58: 75
61 Song M J, Niu J Z, Yin K B, et al. Self-supporting, eutectic-like, nanoporous biphase bismuth-tin film for high-performance magnesium storage [J]. Nano Res., 2019, 12: 801
62 Gu D C, Yuan Y, Liu J W, et al. The electrochemical properties of bismuth-antimony-tin alloy anodes for magnesium ion batteries [J]. J. Power Sources, 2022, 548: 232076
63 Gu D C, Yuan Y, Peng X H, et al. Realizing high-stability anodes for rechargeable magnesium batteries via in situ-formed nanoporous Bi and nanosized Sn [J]. J. Mater. Chem., 2024, 12A: 26890
64 Peng X H, Yuan Y, Gu D C, et al. Unlocking the power of magnesium batteries: Synergistic effect of InSb-C composites to achieve superior electrochemical performance [J]. Small, 2024, 20: 2400967
65 Yang G L, Li Y J, Zhang C, et al. In situ formed magnesiophilic sites guiding uniform deposition for stable magnesium metal anodes [J]. Nano Lett., 2022, 22: 9138
66 Li Y J, Yang G L, Zhang C, et al. Grain-boundary-rich triphasic artificial hybrid interphase toward practical magnesium metal anodes [J]. Adv. Funct. Mater., 2022, 33: 2210639
67 Chen T N, Sai Gautam G, Canepa P. Ionic transport in potential coating materials for Mg batteries [J]. Chem. Mater., 2019, 31: 8087
doi: 10.1021/acs.chemmater.9b02692
68 Liu Z, Li Y S, Ji Y Z, et al. Dendrite-free lithium based on lessons learned from lithium and magnesium electrodeposition morphology simulations [J]. Cell Rep. Phys. Sci., 2021, 2: 100294
69 Zhang S X, Cheng M X, Zhang P, et al. Insights into the stability of magnesium borate salts for rechargeable magnesium batteries from AIMD simulations [J]. Chem. Commun., 2022, 58: 11969
70 Song Z H, Zhang Z H, Du A B, et al. Uniform magnesium electrodeposition via synergistic coupling of current homogenization, geometric confinement, and chemisorption effect [J]. Adv. Mater., 2021, 33: 2100224
71 Liang Y L, Feng R J, Yang S Q, et al. Rechargeable Mg batteries with graphene-like MoS2 cathode and ultrasmall Mg nanoparticle anode [J]. Adv. Mater., 2011, 23: 640
72 Maddegalla A, Mukherjee A, Blázquez J A, et al. AZ31 magnesium alloy foils as thin anodes for rechargeable magnesium batteries [J]. ChemSusChem, 2021, 14: 4690
doi: 10.1002/cssc.202101323 pmid: 34339584
73 Mandai T, Somekawa H. Metallurgical approach to enhance the electrochemical activity of magnesium anodes for magnesium rechargeable batteries [J]. Chem. Commun., 2020, 56: 12122
74 Liu H, Tan S S, Wang Z T, et al. Binary Mg-1 at%Gd alloy anode for high-performance rechargeable magnesium batteries [J]. ChemSusChem, 2024, 17: e202301589
75 Liu H. Effect of alloying elements on electrochemical performance of magnesium anode in magnesium ion battery [D]. Chongqing: Chongqing University, 2022
刘 晗. 合金元素对镁离子电池镁负极电化学性能的影响 [D]. 重庆: 重庆大学, 2022
76 Zhang B X, Yue J L, Wang D, et al. Alloy alleviating galvanic corrosion enables uniform Mg deposition with long cycle life [J]. ACS Energy Lett., 2024, 9: 1771
77 He G, Li Q W, Shen Y L, et al. Flexible amalgam film enables stable lithium metal anodes with high capacities [J]. Angew. Chem. Int. Ed., 2019, 58: 18466
doi: 10.1002/anie.201911800 pmid: 31595629
78 Liu J J, Hu H, Wu T Q, et al. Tailoring the microstructure of Mg-Al-Sn-RE alloy via friction stir processing and the impact on its electrochemical discharge behaviour as the anode for Mg-air battery [J]. J. Magnes. Alloy., 2024, 12: 1554
79 Huang X, Dai Q W, Xiang Q, et al. Microstructure design of advanced magnesium-air battery anodes [J]. J. Magnes. Alloy., 2024, 12: 443
80 Wei C L, Tan L W, Zhang Y C, et al. Highly reversible Mg metal anodes enabled by interfacial liquid metal engineering for high-energy Mg-S batteries [J]. Energy Storage Mater., 2022, 48: 447
81 Song C, Yuan Y, Gu D C, et al. The evaluation of Mg-Ga compounds as electrode materials for Mg-ion batteries via ab initio simulation [J]. J. Electrochem. Soc., 2021, 168: 110539
82 Pechberty C, Hagopian A, Ledeuil J B, et al. Alloying electrode coatings towards better magnesium batteries [J]. J. Mater. Chem., 2022, 10A: 12104
83 Zhao Y M, Du A B, Dong S M, et al. A bismuth-based protective layer for magnesium metal anode in noncorrosive electrolytes [J]. ACS Energy Lett., 2021, 6: 2594
84 Zhuang Y C, Wu D Z, Wang F, et al. Tailoring a hybrid functional layer for Mg metal anodes in conventional electrolytes with a low overpotential [J]. ACS Appl. Mater. Interfaces, 2022, 14: 47605
85 Lv R J, Guan X Z, Zhang J H, et al. Enabling Mg metal anodes rechargeable in conventional electrolytes by fast ionic transport interphase [J]. Natl. Sci. Rev., 2020, 7: 333
doi: 10.1093/nsr/nwz157 pmid: 34692049
86 Yang B P, Xia L Y, Li R, et al. Superior plating/stripping performance through constructing an artificial interphase layer on metallic Mg anode [J]. J. Mater. Sci. Technol., 2023, 157: 154
doi: 10.1016/j.jmst.2023.01.054
87 Wang Y Q, Cheng F L, Huang Y Z, et al. Vertically-oriented growth of MgMOF layer via heteroepitaxial guidance for highly stable magnesium-metal anode [J]. Energy Storage Mater., 2023, 61: 102911
88 Zhang Y J, Li J, Zhao W Y, et al. Defect-free metal-organic framework membrane for precise ion/solvent separation toward highly stable magnesium metal anode [J]. Adv. Mater., 2022, 34: 2108114
89 Li C, Shyamsunder A, Key B, et al. Stabilizing magnesium plating by a low-cost inorganic surface membrane for high-voltage and high-power Mg batteries [J]. Joule, 2023, 7: 2798
90 Son S B, Gao T, Harvey S P, et al. An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes [J]. Nat. Chem., 2018, 10: 532
91 Wen T T, Qu B H, Tan S S, et al. Rational design of artificial interphase buffer layer with 3D porous channel for uniform deposition in magnesium metal anodes [J]. Energy Storage Mater., 2023, 55: 816
92 Wen T T, Tan S S, Li R, et al. Large-scale integration of the ion-reinforced phytic acid layer stabilizing magnesium metal anode [J]. ACS Nano, 2024, 18: 11740
[1] LI Qian, SUN Xuan, LUO Qun, LIU Bin, WU Chengzhang, PAN Fusheng. Regulation of Hydrogen Storage Phase and Its Interface in Magnesium-Based Materials for Hydrogen Storage Performance[J]. 金属学报, 2023, 59(3): 349-370.
[2] Min ZHU, Zhongchen LU, Renzong HU, Liuzhang OUYANG. DIELECTRIC BARRIER DISCHARGE PLASMA ASSISTED BALL MILLING TECHNOLOGY AND ITS APPLICATIONS IN MATERIALS FABRICATION[J]. 金属学报, 2016, 52(10): 1239-1248.
[3] Chang-Ming LI. A comparative study on the performances of thin film and granular tin as Li ion insertion electrodes prepared by electrodeposition[J]. 金属学报, 2007, 43(5): 515-520 .
No Suggested Reading articles found!