|
|
Progress on Materials Design and Multiscale Simulations for Phase-Change Memory |
SHEN Xueyang, CHU Ruixuan, JIANG Yihui, ZHANG Wei( ) |
Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China |
|
Cite this article:
SHEN Xueyang, CHU Ruixuan, JIANG Yihui, ZHANG Wei. Progress on Materials Design and Multiscale Simulations for Phase-Change Memory. Acta Metall Sin, 2024, 60(10): 1362-1378.
|
Abstract In the era of big data, the demand for data storage and processing is increasing because of advanced technologies such as artificial intelligence (AI), 5G, and cloud computing. Emerging non-volatile memory materials and devices present remarkable opportunities to enhance computing capacity. Concurrently, the AI-driven scientific research paradigm introduces a new mode for improving device performance. This review focuses on recent advances in phase-change memory materials and devices, emphasizing computational- and data-driven methodologies. Phase-change materials (PCMs) operate based on rapid and reversible phase transitions between amorphous and crystalline states, where differences in electrical and optical properties are used to encode digital information. These materials typically consist of multicomponent alloys, with phase transitions involving melting, quenching, crystallization, glass relaxation, and crystal-crystal structural changes. To achieve a detailed atomistic understanding of PCMs, large-scale density functional theory (DFT) and DFT-based ab initio molecular dynamics (AIMD) simulations are essential. Comparisons between DFT/AIMD simulations and experimental results have clarified many fundamental aspects of PCM. The first part of this review provides an overview of the history and progress in large-scale ab initio simulations of PCMs. With atomic-scale knowledge, rational materials design becomes feasible. The second part explores methods for developing new PCMs with specific properties, such as accelerating crystallization at elevated temperatures while maintaining non-volatile characteristics at room temperature. High-throughput screening's role in discovering new phase change alloys is also discussed. In the third part, we examine multiscale and cross-scale simulations of PCM for various optical and electronic phase change applications. By computing the dielectric functions of PCM during the amorphous-to-crystalline transition, we can track changes in the refractive index and extinction coefficient across visible and infrared spectra over time. These DFT-computed parameters inform coarse-grained device simulations using finite-difference time-domain (FDTD) or finite element method (FEM). Based on these multiscale simulations, we offer optimization guidelines for non-volatile color display and photonic waveguide devices. The machine learning potentials address some performance gaps between the DFT/AIMD and FEM/FDTD calculations. Machine-learning-driven molecular dynamics (MLMD) simulations serve as cross-scale simulations, with recent developments including neural networks, graph convolutional neural networks, and Gaussian approximation potentials. We discuss the role of MLMD in enabling device-scale atomistic simulations, facilitating device design and optimization with atomic-scale information. Finally, we outline future opportunities and challenges in theoretical PCM research. With ongoing AI-driven fundamental research, we anticipate the commercialization of high-performance phase change memory, neuroinspired computing, and reconfigurable nanophotonic devices, which will, in turn, foster the development of more advanced theoretical tools for research.
|
Received: 03 June 2024
|
|
Fund: National Key Research and Development Program of China(2023YFB4404500);National Natural Science Foundation of China(62374131) |
Corresponding Authors:
ZHANG Wei, professor, Tel: (029)82664839, E-mail: wzhang0@mail.xjtu.edu.cn
|
1 |
Wuttig M, Yamada N. Phase-change materials for rewriteable data storage [J]. Nat. Mater., 2007, 6: 824
pmid: 17972937
|
2 |
Wong H S P, Raoux S, Kim S, et al. Phase change memory [J]. Proc. IEEE, 2010, 98: 2201
|
3 |
Zhang W, Mazzarello R, Wuttig M, et al. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing [J]. Nat. Rev. Mater., 2019, 4: 150
doi: 10.1038/s41578-018-0076-x
|
4 |
Zhou W, Shen X Y, Yang X L, et al. Fabrication and integration of photonic devices for phase-change memory and neuromorphic computing [J]. Int. J. Extrem. Manuf., 2024, 6: 022001
|
5 |
Zhang Z H, Wang Z W, Shi T, et al. Memory materials and devices: From concept to application [J]. InfoMat, 2020, 2: 261
|
6 |
Kwon D H, Kim K M, Jang J H, et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory [J]. Nat. Nanotechnol., 2010, 5: 148
|
7 |
Prezioso M, Merrikh-Bayat F, Hoskins B D, et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors [J]. Nature, 2015, 521: 61
|
8 |
Liu S, Lu N D, Zhao X L, et al. Eliminating negative-SET behavior by suppressing nanofilament overgrowth in cation-based memory [J]. Adv. Mater., 2016, 28: 10623
|
9 |
Mangin S, Ravelosona D, Katine J A, et al. Current-induced magnetization reversal in nanopillars with perpendicular anisotropy [J]. Nat. Mater., 2006, 5: 210
|
10 |
Torrejon J, Riou M, Araujo F A, et al. Neuromorphic computing with nanoscale spintronic oscillators [J]. Nature, 2017, 547: 428
|
11 |
Park B H, Kang B S, Bu S D, et al. Lanthanum-substituted bismuth titanate for use in non-volatile memories [J]. Nature, 1999, 401: 682
|
12 |
Chanthbouala A, Garcia V, Cherifi R O, et al. A ferroelectric memristor [J]. Nat. Mater., 2012, 11: 860
doi: 10.1038/nmat3415
pmid: 22983431
|
13 |
Wong H S P, Salahuddin S. Memory leads the way to better computing [J]. Nat. Nanotechnol., 2015, 10: 191
doi: 10.1038/nnano.2015.29
pmid: 25740127
|
14 |
Yang J J, Strukov D B, Stewart D R. Memristive devices for computing [J]. Nat. Nanotechnol., 2013, 8: 13
doi: 10.1038/nnano.2012.240
pmid: 23269430
|
15 |
Service R F. The brain chip [J]. Science, 2014, 345: 614
doi: 10.1126/science.345.6197.614
pmid: 25104367
|
16 |
Lanza M, Sebastian A, Lu W D, et al. Memristive technologies for data storage, computation, encryption, and radio-frequency communication [J]. Science, 2022, 376: eabj9979
|
17 |
Liu B, Wei T, Hu J, et al. Universal memory based on phase-change materials: From phase-change random access memory to optoelectronic hybrid storage [J]. Chin. Phys., 2021, 30B: 058504
|
18 |
Kau D, Tang S, Karpov I V, et al. A stackable cross point phase change memory [A]. Proceedings of 2009 IEEE International Electron Devices Meeting [C]. Baltimore: IEEE, 2009: 1
|
19 |
Cheng H Y, Carta F, Chien W C, et al. 3D cross-point phase-change memory for storage-class memory [J]. J. Phys., 2019, 52D: 473002
|
20 |
Li X, Chen H P, Xie C C, et al. Enhancing the performance of phase change memory for embedded applications [J]. Phys. Status Solidi (RRL), 2019, 13: 1800558
|
21 |
Arnaud F, Ferreira P, Piazza F, et al. High density embedded PCM cell in 28 nm FDSOI technology for automotive micro-controller applications [A]. Proceedings of 2020 IEEE International Electron Devices Meeting [C]. San Francisco: IEEE, 2020: 24.2.1
|
22 |
Cappelletti P, Annunziata R, Arnaud F, et al. Phase change memory for automotive grade embedded NVM applications [J]. J. Phys., 2020, 53D: 193002
|
23 |
Sebastian A, Le Gallo M, Khaddam-Aljameh R, et al. Memory devices and applications for in-memory computing [J]. Nat. Nanotechnol., 2020, 15: 529
doi: 10.1038/s41565-020-0655-z
pmid: 32231270
|
24 |
Xu M, Mai X L, Lin J, et al. Recent advances on neuromorphic devices based on chalcogenide phase-change materials [J]. Adv. Funct. Mater., 2020, 30: 2003419
|
25 |
Shastri B J, Tait A N, Ferreira de Lima T, et al. Photonics for artificial intelligence and neuromorphic computing [J]. Nat. Photonics, 2021, 15: 102
|
26 |
Liu H L, Dong W L, Wang H, et al. Rewritable color nanoprints in antimony trisulfide films [J]. Sci. Adv., 2020, 6: eabb7171
|
27 |
Cheng Z G, Milne T, Salter P, et al. Antimony thin films demonstrate programmable optical nonlinearity [J]. Sci. Adv., 2021, 7: eabd7097
|
28 |
Ríos C, Stegmaier M, Hosseini P, et al. Integrated all-photonic non-volatile multi-level memory [J]. Nat. Photonics, 2015, 9: 725
doi: 10.1038/NPHOTON.2015.182
|
29 |
Cheng Z G, Ríos C, Pernice W H P, et al. On-chip photonic synapse [J]. Sci. Adv., 2017, 3: e1700160
|
30 |
Wuttig M, Bhaskaran H, Taubner T. Phase-change materials for non-volatile photonic applications [J]. Nat. Photonics, 2017, 11: 465
|
31 |
Wu C M, Yu H S, Lee S, et al. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network [J]. Nat. Commun., 2021, 12: 96
doi: 10.1038/s41467-020-20365-z
pmid: 33398011
|
32 |
Ríos C, Youngblood N, Cheng Z G, et al. In-memory computing on a photonic platform [J]. Sci. Adv., 2019, 5: eaau5759
|
33 |
Feldmann J, Youngblood N, Karpov M, et al. Parallel convolutional processing using an integrated photonic tensor core [J]. Nature, 2021, 589: 52
|
34 |
Zhang W, Mazzarello R, Ma E. Phase-change materials in electronics and photonics [J]. MRS Bull., 2019, 44: 686
doi: 10.1557/mrs.2019.201
|
35 |
Curtarolo S, Hart G L W, Nardelli M B, et al. The high-throughput highway to computational materials design [J]. Nat. Mater., 2013, 12: 191
doi: 10.1038/nmat3568
pmid: 23422720
|
36 |
Xie J X, Su Y J, Xue D Z, et al. Machine learning for materials research and development [J]. Acta Metall. Sin., 2021, 57: 1343
doi: 10.11900/0412.1961.2021.00357
|
|
谢建新, 宿彦京, 薛德祯 等. 机器学习在材料研发中的应用 [J]. 金属学报, 2021, 57: 1343
doi: 10.11900/0412.1961.2021.00357
|
37 |
Friederich P, Häse F, Proppe J, et al. Machine-learned potentials for next-generation matter simulations [J]. Nat. Mater., 2021, 20: 750
doi: 10.1038/s41563-020-0777-6
pmid: 34045696
|
38 |
Li H, Xu Y, Duan W H. Ab initio artificial intelligence: Future research of Materials Genome Initiative [J]. MGE Adv., 2023, 1: e16
|
39 |
Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China [J]. Acta Metall. Sin., 2020, 56: 1313
doi: 10.11900/0412.1961.2020.00199
|
|
宿彦京, 付华栋, 白 洋 等. 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
doi: 10.11900/0412.1961.2020.00199
|
40 |
Xie J X. Prospects of materials genome engineering frontiers [J]. MGE Adv., 2023, 1: e17
|
41 |
Feng R, Zhang C, Gao M C, et al. High-throughput design of high-performance lightweight high-entropy alloys [J]. Nat. Commun., 2021, 12: 4329
doi: 10.1038/s41467-021-24523-9
pmid: 34267192
|
42 |
Rao Z Y, Tung P Y, Xie R W, et al. Machine learning-enabled high-entropy alloy discovery [J]. Science, 2022, 378: 78
doi: 10.1126/science.abo4940
pmid: 36201584
|
43 |
Xu Y F, Elcoro L, Song Z D, et al. High-throughput calculations of magnetic topological materials [J]. Nature, 2020, 586: 702
|
44 |
Choudhary K, Garrity K F, Jiang J, et al. Computational search for magnetic and non-magnetic 2D topological materials using unified spin-orbit spillage screening [J]. npj Comput. Mater., 2020, 6: 49
|
45 |
Gorai P, Stevanović V, Toberer E S. Computationally guided discovery of thermoelectric materials [J]. Nat. Rev. Mater., 2017, 2: 17053
|
46 |
Wang X D, Tan J L, Ouyang J, et al. Designing inorganic semiconductors with cold-rolling processability [J]. Adv. Sci., 2022, 9: 2203776
|
47 |
Gao Z Q, Wei T R, Deng T T, et al. High-throughput screening of 2D van der Waals crystals with plastic deformability [J]. Nat. Commun., 2022, 13: 7491
doi: 10.1038/s41467-022-35229-x
pmid: 36470897
|
48 |
Jain A, Ong S P, Hautier G, et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation [J]. APL Mater., 2013, 1: 011002
|
49 |
Hicks D, Toher C, Ford D C, et al. AFLOW-XtalFinder: A reliable choice to identify crystalline prototypes [J]. npj Comput. Mater., 2021, 7: 30
|
50 |
Wang G J, Li K Q, Peng L Y, et al. High-throughput automatic integrated material calculations and data management intelligent platform and the application in novel alloys [J]. Acta Metall. Sin., 2022, 58: 75
doi: 10.11900/0412.1961.2021.00041
|
|
王冠杰, 李开旗, 彭力宇 等. 高通量自动流程集成计算与数据管理智能平台及其在合金设计中的应用 [J]. 金属学报, 2022, 58: 75
doi: 10.11900/0412.1961.2021.00041
|
51 |
Yamada N, Ohno E, Akahira N, et al. High speed overwritable phase change optical disk material [J]. Jpn. J. Appl. Phys., 1987, 26(s4): 61
|
52 |
Yamada N, Ohno E, Nishiuchi K, et al. Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory [J]. J. Appl. Phys., 1991, 69: 2849
|
53 |
Caravati S, Bernasconi M, Kühne T D, et al. Coexistence of tetrahedral- and octahedral-like sites in amorphous phase change materials [J]. Appl. Phys. Lett., 2007, 91: 171906
|
54 |
Akola J, Jones R O. Structural phase transitions on the nanoscale: The crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe [J]. Phys. Rev., 2007, 76B: 235201
|
55 |
Kohara S, Kato K, Kimura S, et al. Structural basis for the fast phase change of Ge2Sb2Te5: Ring statistics analogy between the crystal and amorphous states [J]. Appl. Phys. Lett., 2006, 89: 201910
|
56 |
Rao F, Ding K Y, Zhou Y X, et al. Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing [J]. Science, 2017, 358: 1423
doi: 10.1126/science.aao3212
pmid: 29123020
|
57 |
Orava J, Greer A L, Gholipour B, et al. Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry [J]. Nat. Mater., 2012, 11: 279
doi: 10.1038/nmat3275
pmid: 22426461
|
58 |
Jeyasingh R, Fong S W, Lee J, et al. Ultrafast characterization of phase-change material crystallization properties in the melt-quenched amorphous phase [J]. Nano Lett., 2014, 14: 3419
doi: 10.1021/nl500940z
pmid: 24798660
|
59 |
Ronneberger I, Zhang W, Eshet H, et al. Crystallization properties of the Ge2Sb2Te5 phase-change compound from advanced simulations [J]. Adv. Funct. Mater., 2015, 25: 6407
|
60 |
Ronneberger I, Zhang W, Mazzarello R. Crystal growth of Ge2Sb2Te5 at high temperatures [J]. MRS Commun., 2018, 8: 1018
|
61 |
Xu Y Z, Zhou Y X, Wang X D, et al. Unraveling crystallization mechanisms and electronic structure of phase-change materials by large-scale ab initio simulations [J]. Adv. Mater., 2022, 34: 2109139
|
62 |
ten Wolde P R, Ruiz-Montero M J, Frenkel D. Simulation of homogeneous crystal nucleation close to coexistence [J]. Faraday Discuss., 1996, 104: 93
|
63 |
Bartók A P, Csányi G. Gaussian approximation potentials: A brief tutorial introduction [J]. Int. J. Quantum Chem., 2015, 115: 1051
|
64 |
Kalikka J, Akola J, Jones R O. Crystallization processes in the phase change material Ge2Sb2Te5: Unbiased density functional/molecular dynamics simulations [J]. Phys. Rev., 2016, 94B: 134105
|
65 |
Raty J Y, Zhang W, Luckas J, et al. Aging mechanisms in amorphous phase-change materials [J]. Nat. Commun., 2015, 6: 7467
doi: 10.1038/ncomms8467
pmid: 26105012
|
66 |
Li X B, Liu X Q, Liu X, et al. Role of electronic excitation in the amorphization of Ge-Sb-Te alloys [J]. Phys. Rev. Lett., 2011, 107: 015501
|
67 |
Zalden P, Quirin F, Schumacher M, et al. Femtosecond X-ray diffraction reveals a liquid-liquid phase transition in phase-change materials [J]. Science, 2019, 364: 1062
doi: 10.1126/science.aaw1773
pmid: 31197008
|
68 |
Kalikka J, Akola J, Larrucea J, et al. Nucleus-driven crystallization of amorphous Ge2Sb2Te5: A density functional study [J]. Phys. Rev., 2012, 86B: 144113
|
69 |
Kalikka J, Akola J, Jones R O. Simulation of crystallization in Ge2Sb2Te5: A memory effect in the canonical phase-change material [J]. Phys. Rev., 2014, 90B: 184109
|
70 |
Loke D, Lee T H, Wang W J, et al. Breaking the speed limits of phase-change memory [J]. Science, 2012, 336: 1566
doi: 10.1126/science.1221561
pmid: 22723419
|
71 |
Zhang B, Zhang W, Shen Z J, et al. Element-resolved atomic structure imaging of rocksalt Ge2Sb2Te5 phase-change material [J]. Appl. Phys. Lett., 2016, 108: 191902
|
72 |
Xu M, Zhang W, Mazzarello R, et al. Disorder control in crystalline GeSb2Te4 using high pressure [J]. Adv. Sci., 2015, 2: 1500117
|
73 |
Zheng Y H, Xia M J, Cheng Y, et al. Direct observation of metastable face-centered cubic Sb2Te3 crystal [J]. Nano Res., 2016, 9: 3453
|
74 |
Li Z, Si C, Zhou J, et al. Yttrium-doped Sb2Te3: A promising material for phase-change memory [J]. ACS Appl. Mater. Interfaces, 2016, 8: 26126
|
75 |
Liu B, Li K Q, Liu W L, et al. Multi-level phase-change memory with ultralow power consumption and resistance drift [J]. Sci. Bull., 2021, 66: 2217
doi: 10.1016/j.scib.2021.07.018
pmid: 36654113
|
76 |
Zhou Y X, Sun L, Zewdie G M, et al. Bonding similarities and differences between Y-Sb-Te and Sc-Sb-Te phase-change memory materials [J]. J. Mater. Chem., 2020, 8C: 3646
|
77 |
Chen B, Chen Y M, Ding K Y, et al. Kinetics features conducive to cache-type nonvolatile phase-change memory [J]. Chem. Mater., 2019, 31: 8794
doi: 10.1021/acs.chemmater.9b02598
|
78 |
Hu S W, Liu B, Li Z, et al. Identifying optimal dopants for Sb2Te3 phase-change material by high-throughput ab initio calculations with experiments [J]. Comput. Mater. Sci., 2019, 165: 51
|
79 |
Zewdie G M, Zhou Y X, Sun L, et al. Chemical design principles for cache-type Sc-Sb-Te phase-change memory materials [J]. Chem. Mater., 2019, 31: 4008
|
80 |
Wang X P, Li X B, Chen N K, et al. Time-dependent density-functional theory molecular-dynamics study on amorphization of Sc-Sb-Te alloy under optical excitation [J]. npj Comput. Mater., 2020, 6: 31
|
81 |
Qiao C, Guo Y R, Wang S Y, et al. Local structure origin of ultrafast crystallization driven by high-fidelity octahedral clusters in amorphous Sc0.2Sb2Te3 [J]. Appl. Phys. Lett., 2019, 114: 071901
|
82 |
Ding K Y, Chen B, Chen Y M, et al. Recipe for ultrafast and persistent phase-change memory materials [J]. NPG Asia Mater., 2020, 12: 63
|
83 |
Ding K Y, Wang J J, Zhou Y X, et al. Phase-change heterostructure enables ultralow noise and drift for memory operation [J]. Science, 2019, 366: 210
doi: 10.1126/science.aay0291
pmid: 31439757
|
84 |
Yang Z, Li B W, Wang J J, et al. Designing conductive-bridge phase-change memory to enable ultralow programming power [J]. Adv. Sci., 2022, 9: 2103478
|
85 |
Wang J J, Wang X Z, Cheng Y D, et al. Tailoring the oxygen concentration in Ge-Sb-O alloys to enable femtojoule-level phase-change memory operations [J]. Mater. Futures, 2022, 1: 045302
|
86 |
Liu Y T, Li X B, Zheng H, et al. High-throughput screening for phase-change memory materials [J]. Adv. Funct. Mater., 2021, 31: 2009803
|
87 |
Zhang W, Zhang H M, Sun S Y, et al. Metavalent bonding in layered phase-change memory materials [J]. Adv. Sci., 2023, 10: 2300901
|
88 |
Wuttig M, Deringer V L, Gonze X, et al. Incipient metals: Functional materials with a unique bonding mechanism [J]. Adv. Mater., 2018, 30: 1803777
|
89 |
Wuttig M, Schön C F, Lötfering J, et al. Revisiting the nature of chemical bonding in chalcogenides to explain and design their properties [J]. Adv. Mater., 2023, 35: 2208485
|
90 |
Xu Y Z, Wang X D, Zhang W, et al. Materials screening for disorder-controlled chalcogenide crystals for phase-change memory applications [J]. Adv. Mater., 2021, 33: 2006221
|
91 |
Zhang W, Thiess A, Zalden P, et al. Role of vacancies in metal-insulator transitions of crystalline phase-change materials [J]. Nat. Mater., 2012, 11: 952
doi: 10.1038/nmat3456
pmid: 23064498
|
92 |
Jiang T T, Wang X D, Wang J J, et al. In situ characterization of vacancy ordering in Ge-Sb-Te phase-change memory alloys [J]. Fundam. Res., 2022, DOI: 10.1016/j.fmre.2022.09.010
|
93 |
Esser M, Deringer V L, Wuttig M, et al. Orbital mixing in solids as a descriptor for materials mapping [J]. Solid State Commun., 2015, 203: 31
|
94 |
Wang Y Z, Ning J, Lu L, et al. A scheme for simulating multi-level phase change photonics materials [J]. npj Comput. Mater., 2021, 7: 183
|
95 |
Khan A I, Daus A, Islam R, et al. Ultralow-switching current density multilevel phase-change memory on a flexible substrate [J]. Science, 2021, 373: 1243
doi: 10.1126/science.abj1261
pmid: 34516795
|
96 |
Ghazi Sarwat S, Philip T M, Chen C T, et al. Projected mushroom type phase-change memory [J]. Adv. Funct. Mater., 2021, 31: 2106547
|
97 |
Deringer V L, Caro M A, Csányi G. Machine learning interatomic potentials as emerging tools for materials science [J]. Adv. Mater., 2019, 31: 1902765
|
98 |
Wang H, Zhang L F, Han J Q, et al. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics [J]. Comput. Phys. Commun., 2018, 228: 178
|
99 |
Wang G J, Wang C R, Zhang X G, et al. Machine learning interatomic potential: Bridge the gap between small-scale models and realistic device-scale simulations [J]. iScience, 2024, 27: 109673
|
100 |
Zhou Y X, Zhang W, Ma E, et al. Device-scale atomistic modelling of phase-change memory materials [J]. Nat. Electron., 2023, 6: 746
|
101 |
Du K K, Li Q, Lyu Y B, et al. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST [J]. Light Sci. Appl., 2017, 6: e16194
|
102 |
Qu Y R, Li Q, Cai L, et al. Thermal camouflage based on the phase-changing material GST [J]. Light Sci. Appl., 2018, 7: 26
|
103 |
Li C L, Liu D J, Dai D X. Multimode silicon photonics [J]. Nanophotonics, 2019, 8: 227
doi: 10.1515/nanoph-2018-0161
|
104 |
Hosseini P, Wright C D, Bhaskaran H. An optoelectronic framework enabled by low-dimensional phase-change films [J]. Nature, 2014, 511: 206
|
105 |
Wang D N, Zhao L, Yu S Y, et al. Non-volatile tunable optics by design: From chalcogenide phase-change materials to device structures [J]. Mater. Today, 2023, 68: 334
|
106 |
Siegrist T, Jost P, Volker H, et al. Disorder-induced localization in crystalline phase-change materials [J]. Nat. Mater., 2011, 10: 202
doi: 10.1038/nmat2934
pmid: 21217692
|
107 |
Hu C Q, Yang Z B, Bi C B, et al. “All-crystalline” phase transition in nonmetal doped germanium-antimony-tellurium films for high-temperature non-volatile photonic applications [J]. Acta Mater., 2020, 188: 121
|
108 |
Matsunaga T, Umetani Y, Yamada N. Structural study of a Ag3.4In3.7Sb76.4Te16.5 quadruple compound utilized for phase-change optical disks [J]. Phys. Rev., 2001, 64B: 184116
|
109 |
Matsunaga T, Akola J, Kohara S, et al. From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials [J]. Nat. Mater., 2011, 10: 129
doi: 10.1038/nmat2931
pmid: 21217690
|
110 |
Zhang W, Ronneberger I, Zalden P, et al. How fragility makes phase-change data storage robust: Insights from ab initio simulations [J]. Sci. Rep., 2014, 4: 6529
doi: 10.1038/srep06529
pmid: 25284316
|
111 |
Wang X D, Zhou W, Zhang H M, et al. Multiscale simulations of growth-dominated Sb2Te phase-change material for non-volatile photonic applications [J]. npj Comput. Mater., 2023, 9: 136
|
112 |
Wang V, Xu N, Liu J C, et al. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code [J]. Comput. Phys. Commun., 2021, 267: 108033
|
113 |
IncAnsys. Lumerical FDTD solutions [EB/OL].
|
114 |
Zheng Y H, Song W X, Song Z T, et al. A complicated route from disorder to order in antimony-tellurium binary phase change materials [J]. Adv. Sci., 2024, 11: 2301021
|
115 |
Belsky A J, Hellenbrandt M, Karen V L, et al. New developments in the Inorganic Crystal Structure Database (ICSD): Accessibility in support of materials research and design [J]. Acta Crystallogr., 2002, 58B: 364
|
116 |
Pickard C J, Needs R J. Ab initio random structure searching [J]. J. Phys.: Condens. Matter, 2011, 23: 053201
|
117 |
Thompson A P, Aktulga H M, Berger R, et al. LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales [J]. Comput. Phys. Commun., 2022, 271: 108171
|
118 |
Behler J. First principles neural network potentials for reactive simulations of large molecular and condensed systems [J]. Angew. Chem. Int. Ed., 2017, 56: 12828
doi: 10.1002/anie.201703114
pmid: 28520235
|
119 |
Xie T, Grossman J C. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties [J]. Phys. Rev. Lett., 2018, 120: 145301
|
120 |
Behler J. Atom-centered symmetry functions for constructing high-dimensional neural network potentials [J]. J. Chem. Phys., 2011, 134: 074106
|
121 |
Wang G J, Sun Y Q, Zhou J, et al. PotentialMind: Graph convolutional machine learning potential for Sb-Te binary compounds of multiple stoichiometries [J]. J. Phys. Chem., 2023, 127C: 24724
|
122 |
Bartók A P, Payne M C, Kondor R, et al. Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons [J]. Phys. Rev. Lett., 2010, 104: 136403
|
123 |
Deringer V L, Bartók A P, Bernstein N, et al. Gaussian process regression for materials and molecules [J]. Chem. Rev., 2021, 121: 10073
doi: 10.1021/acs.chemrev.1c00022
pmid: 34398616
|
124 |
Sosso G C, Miceli G, Caravati S, et al. Neural network interatomic potential for the phase change material GeTe [J]. Phys. Rev., 2012, 85B: 174103
|
125 |
Sosso G C, Miceli G, Caravati S, et al. Fast crystallization of the phase change compound GeTe by large-scale molecular dynamics simulations [J]. J. Phys. Chem. Lett., 2013, 4: 4241
doi: 10.1021/jz402268v
pmid: 26296172
|
126 |
Gabardi S, Baldi E, Bosoni E, et al. Atomistic simulations of the crystallization and aging of GeTe nanowires [J]. J. Phys. Chem., 2017, 121C: 23827
|
127 |
Abou El Kheir O, Bonati L, Parrinello M, et al. Unraveling the crystallization kinetics of the Ge2Sb2Te5 phase change compound with a machine-learned interatomic potential [J]. npj Comput. Mater., 2024, 10: 33
|
128 |
Dragoni D, Behler J, Bernasconi M. Mechanism of amorphous phase stabilization in ultrathin films of monoatomic phase change material [J]. Nanoscale, 2021, 13: 16146
|
129 |
Shi M C, Li J H, Tao M, et al. Artificial intelligence model for efficient simulation of monatomic phase change material antimony [J]. Mater. Sci. Semicond. Process., 2021, 136: 106146
|
130 |
Li K Q, Liu B, Zhou J, et al. Revealing the crystallization dynamics of Sb-Te phase change materials by large-scale simulations [J]. J. Mater. Chem., 2024, 12C: 3897
|
131 |
Mocanu F C, Konstantinou K, Lee T H, et al. Modeling the phase-change memory material, Ge2Sb2Te5, with a machine-learned interatomic potential [J]. J. Phys. Chem., 2018, 122B: 8998
|
132 |
Mocanu F C, Konstantinou K, Elliott S R. Quench-rate and size-dependent behaviour in glassy Ge2Sb2Te5 models simulated with a machine-learned Gaussian approximation potential [J]. J. Phys., 2020, 53D: 244002
|
133 |
Konstantinou K, Mocanu F C, Lee T H, et al. Revealing the intrinsic nature of the mid-gap defects in amorphous Ge2Sb2Te5 [J]. Nat. Commun., 2019, 10: 3065
|
134 |
Konstantinou K, Mocanu F C, Akola J, et al. Electric-field-induced annihilation of localized gap defect states in amorphous phase-change memory materials [J]. Acta Mater., 2022, 223: 117465
|
135 |
Zhou Y X, Zhang W, Ma E, et al. Device-scale atomistic modelling of phase-change memory materials [J]. Nat. Electron., 2023, 6: 746
|
136 |
Mo P H, Li C, Zhao D, et al. Accurate and efficient molecular dynamics based on machine learning and non von Neumann architecture [J]. npj Comput. Mater., 2022, 8: 107
|
137 |
Li H, Wang Z, Zou N L, et al. Deep-learning density functional theory Hamiltonian for efficient ab initio electronic-structure calculation [J]. Nat. Comput. Sci., 2022, 2: 367
|
138 |
Gong X X, Li H, Zou N L, et al. General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian [J]. Nat. Commun., 2023, 14: 2848
doi: 10.1038/s41467-023-38468-8
pmid: 37208320
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|