Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (4): 400-406    DOI: 10.11900/0412.1961.2014.00546
Current Issue | Archive | Adv Search |
RESEARCH ON HIGH-CYCLE FATIGUE BEHAVIOR OF FV520B STEEL BASED ON INTRINSIC DISSIPATION
GUO Qiang1(), GUO Xinglin1, FAN Junling2, WU Chengwei1
1 State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology,Dalian 116024
2 Aircraft Strength Research Institute, Xi'an 710065
Cite this article: 

GUO Qiang, GUO Xinglin, FAN Junling, WU Chengwei. RESEARCH ON HIGH-CYCLE FATIGUE BEHAVIOR OF FV520B STEEL BASED ON INTRINSIC DISSIPATION. Acta Metall Sin, 2015, 51(4): 400-406.

Download:  HTML  PDF(873KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Systemic experimental research was carried out on high-cycle fatigue behavior of FV520B steel based on the theory and calculation model of intrinsic dissipation. The experiment results show that the intrinsic dissipation of FV520B steel increases with the increase of the applied stress amplitude. Generally, the inflection point of intrinsic dissipation corresponds to the transition of the generation mechanism of intrinsic dissipation: from the reversible motion of the microstructure (the swing of dislocation lines between strong pinning points) to the combined effects of the reversible and irreversible motion of the microstructure (the generation of permanent slip, the unpinning from strong points and the multiplication of dislocation). And the stress amplitude corresponding to the inflection point is just the critical stress value inducing fatigue damage accumulation. Moreover, the results also indicate that FV520B steel subjected to constant stress amplitude keeps a relatively steady rate related to the applied stress amplitude and independent of the loading sequences. Additionally, the loading frequency has no effect on the fatigue damage per loading cycle. Fatigue failure will occur once the amount of the intrinsic dissipation, due to the irreversible motion of the microstructure, accumulates to a threshold value. And the energy threshold is found to be independent of the loading history.

Key words:  FV520B steel      intrinsic dissipation      high-cycle fatigue      microstructure motion     
ZTFLH:  TG113.2  
  TG142.7  
Fund: Supported by National Natural Science Foundation of China (No.11072045) and National Basic Research Program of China (No.2011CB706504)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00546     OR     https://www.ams.org.cn/EN/Y2015/V51/I4/400

Fig.1  Schematic of dimensions of specimen (unit: mm)
Fig.2  Loading procedure ( σa —stress amplitude)
(a) stepwise loading
(b) iterative four-stage loading
Fig.3  Intrinsic dissipation dependent of stress amplitude (s0—fatigue limit, dˉ1 —intrinsic dissipation)
Fig.4  Intrinsic dissipation caused by the irreversible microstructure evolution
Fig.5  Evolution of intrinsic dissipation during the whole fatigue life
Fig.6  S-N curve of FV520B steel ( Nf —fatigue life, Ps —survival probability)
Fig.7  Intrinsic dissipation dependent of loading sequences
Fig.8  Intrinsic dissipation dependent of loading frequencies
[1] Zhou Q Q, Zhai Y C. Acta Metall Sin, 2009; 45: 1249
(周倩青, 翟玉春. 金属学报, 2009; 45: 1249)
[2] Niu J, Dong J M, Xue J. Chin J Mech Eng, 2007; 43(12): 78
(牛 靖, 董俊明, 薛 锦. 机械工程学报, 2007; 43(12): 78)
[3] Niu J, Dong J M, Xue J, Zhang M. Trans China Weld Inst, 2006; 27: 101
(牛 靖, 董俊明, 薛 锦, 张 敏. 焊接学报, 2006; 27: 101)
[4] Fan J L, Guo X L, Wu C W, Deng D W. Chin J Mater Res, 2012; 33: 76
(樊俊铃, 郭杏林, 吴承伟, 邓德伟. 材料研究学报, 2012; 33: 76)
[5] Fan J L, Guo X L, Wu C W, Zhao Y G. Mater Sci Eng, 2011; A528: 8417
[6] Fan J L, Guo X L, Wu C W. Mater Eng, 2013; (7): 1
(樊俊铃, 郭杏林, 吴承伟. 材料工程, 2013; (7): 1)
[7] Risitano A, Risitano G. Int J Fatigue, 2013; 48: 214
[8] Fargione G, Geraci A, La Rosa G, Risitano A. Int J Fatigue, 2002; 24: 11
[9] Boulanger T, Chrysochoos A, Mabru C, Galtier A. Int J Fatigue, 2004; 26: 221
[10] Berthel B, Chrysochoos A, Wattrisse B, Galtier A. Exp Mech, 2007; 48: 79
[11] Giancane S, Chrysochoos A, Dattoma V, Wattrisse B. Theor Appl Fract Mec, 2009; 52: 117
[12] Connesson N, Maquin F, Pierron F. Acta Mater, 2011; 59: 4100
[13] Connesson N, Maquin F, Pierron F. Exp Mech, 2010; 51: 23
[14] Meneghetti G, Ricotta M. Eng Fract Mech, 2012; 81: 2
[15] Meneghetti G, Quaresimin M. Composites, 2011; 42B: 217
[16] Meneghetti G. Int J Fatigue, 2007; 29: 81
[17] Maquin F, Pierron F. Mech Mater, 2009; 41: 928
[18] Tong X Y, Wang D J, Xu H. Acta Metall Sin, 1992; 28: 163
(童小燕, 王德俊, 徐 灏. 金属学报, 1992; 28: 163)
[19] Tong X Y, Wang D J, Xu H. Acta Metall Sin, 1991; 27: 149
(童小燕, 王德俊, 徐 灏. 金属学报, 1991; 27: 149)
[20] Yao L J, Li B, Tong X Y. J Northwestern Polytechnical Univ, 2008; 26: 225
(姚磊江, 李 斌, 童小燕. 西北工业大学学报, 2008; 26: 225)
[21] Zeng W, Han X, Ding H, Liu H. J Mech Strength, 2008; 30: 658
(曾 伟, 韩 旭,丁 桦, 刘 浩. 机械强度, 2008; 30: 658)
[22] Li Y, Han X, Liu J, Jiang C. Acta Mechanica Sin, 2013; 45: 367
(李 源, 韩 旭, 刘 杰, 姜 潮. 力学学报, 2013; 45: 367)
[23] Zhang H X, Wu G H, Yan Z F, Guo S F, Chen P D, Wang W X. Mater Des, 2014; 55: 785
[24] Liu X Q, Zhang H Q, Yan Z F, Wang W X, Zhou Y G, Zhang Q M. Theor Appl Fract Mech, 2013; 67: 46
[25] Guo Q, Guo X L, Fan J L, Hou P J, Wu C W. Acta Mechanica Sin, 2014; 46: 931
(郭 强, 郭杏林, 樊俊铃, 侯培军, 吴承伟. 力学学报, 2014; 46: 931)
[26] Fan J L, Guo X L, Wu C W. Int J Fatigue, 2012; 44: 1
[27] Fan J L, Guo X L, Zhao Y G, Wu C W. Mater Eng, 2011; (12): 29
(樊俊铃, 郭杏林, 赵延广, 吴承伟. 材料工程, 2011; (12): 29)
[28] Lemaitre J,Chaboche J L. Mechanics of Solid Materials. Cambridge: University Press, 1990: 37
[29] Wang H G. An Introduction to Thermoelasticity. Beijing: Tsinghua University Press, 1989: 38
(王洪纲. 热弹性力学概论. 北京: 清华大学出版社, 1989: 38)
[1] ZHANG Zhefeng,SHAO Chenwei,WANG Bin,YANG Haokun,DONG Fuyuan,LIU Rui,ZHANG Zhenjun,ZHANG Peng. Tensile and Fatigue Properties and Deformation Mechanisms of Twinning-Induced Plasticity Steels[J]. 金属学报, 2020, 56(4): 476-486.
[2] Zhefeng ZHANG, Rui LIU, Zhenjun ZHANG, Yanzhong TIAN, Peng ZHANG. Exploration on the Unified Model for Fatigue Properties Prediction of Metallic Materials[J]. 金属学报, 2018, 54(11): 1693-1704.
[3] Xiaolong LIU,Chengqi SUN,Yantian ZHOU,Youshi HONG. EFFECTS OF MICROSTRUCTURE AND STRESS RATIO ON HIGH-CYCLE AND VERY-HIGH-CYCLE FATIGUE BEHAVIOR OF Ti-6Al-4V ALLOY[J]. 金属学报, 2016, 52(8): 923-930.
[4] Jun XIE, Jinjiang YU, Xiaofeng SUN, Tao JIN. HIGH-CYCLE FATIGUE BEHAVIOR OF K416B Ni-BASED CASTING SUPERALLOY AT 700 ℃[J]. 金属学报, 2016, 52(3): 257-263.
[5] QIAN Gui'an HONG Youshi. EFFECTS OF ENVIRONMENTAL MEDIA ON HIGH CYCLE AND VERY-HIGH-CYCLE FATIGUE BEHAVIORS OF STRUCTURAL STEEL 40Cr[J]. 金属学报, 2009, 45(11): 1356-1363.
No Suggested Reading articles found!