Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (1): 114-120    DOI: 10.11900/0412.1961.2014.00400
Current Issue | Archive | Adv Search |
EFFECT OF GROWTH ANGLE AND SOLIDIFICATION RATE ON THE FLOATING ZONE STABILITY FOR PROCESSING OF HIGH-TEMPERATURE PURE METALS
LI Shuangming1(), GENG Zhenbo1, HU Rui1, LIU Yi2, LUO Ximing2
1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
2 Kunming Institute of Precious Metals, Kunming 650106
Cite this article: 

LI Shuangming, GENG Zhenbo, HU Rui, LIU Yi, LUO Ximing. EFFECT OF GROWTH ANGLE AND SOLIDIFICATION RATE ON THE FLOATING ZONE STABILITY FOR PROCESSING OF HIGH-TEMPERATURE PURE METALS. Acta Metall Sin, 2015, 51(1): 114-120.

Download:  HTML  PDF(935KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The height of floating zone and molten zone instability for five pure metals including Nb, W, Ta, Mo, and Ir with high melting points is investigated using electron beam floating zone method (EBFZM). The results show that the height level of floating zone for these five metals are in order with the sequence of Nb>Mo>W>Ta>Ir. The crystal growth angles for these metals are in the range of 8°~13° and the sample in large size can be developed by EBFZM as the growth angle is found not to be zero. Meanwhile, the actual growth angles are related with the interface growth mechanism. For continuous growth mechanism, the growth angles vary slightly with the solidification rate for rough interface, and for dislocation growth mechanism, the growth angles decrease with increasing the solidification rate. If faceting growth mechanism prevails, the growth angles drop remarkably at a low solidification rate and further increase with increasing the solidification rate. Additionally, by employing EBFZM growth of Ir and Mo pure metals, a solidification rate approaching 1 mm/min is available for controlling the growth angle and the height of floating zone. These calculations fit well with the experimental results of Mo single crystal prepared by EBFZM.

Key words:  high-melting point metal      electron beam floating zone method      growth angle      interface growth mechanism     
ZTFLH:  TG292  
Fund: Supported by National Natural Science Foundation of China-Yunnan Province Joint Fund (No.U1202273)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00400     OR     https://www.ams.org.cn/EN/Y2015/V51/I1/114

Fig.1  Schematic shapes of a molten floating zone growth of a cylindrical crystal by electron beam floating zone method (EBFZM) (M—melting interface, S—solidification interface, L—liquid metal, a—growth angle, rc—growing crystal radius, h—height of molten zone, R1 and R2—radii of principal curvature, r—axial coordinate, z—vertical coordinate)

(a) upward growth

(b) pulling down growth

Metal r / (g·m-3) Tm / ℃ gsl / (mN·m-1) glv / (mN·m-1) a / (°) hmax / mm
Ir 20.00 2443 411 2241 10.6 8.4
Mo 9.34 2620 464 2110 12.7 11.9
Nb 7.83 2468 347 2335 8.4 13.7
Ta 15.00 2950 415 2467 9.7 10.1
W 16.20 3370 510 2676 12.0 10.2
Table 1  Physical parameters for five pure metals with high melting points[13,14]
Fig.2  Relationship of heights of floating zone of Ir, Mo, Nb, Ta, and W with the radius of the floating zone stable growth by EBFZM, and imposed with the Rayleigh′s instability results
Fig.3  Relationship of heights of floating zone of Ir and Mo with the radius of floating zone stable growth by EBFZM as the growth angle does not equal to zero
Fig.4  Crystal growth angles as a function of the solidification rate for Ir (a) and Mo (b) prepared by EBFZM
Fig.5  Heights of floating zone vs the solidification rate of Ir (a) and Mo (b) in diameter of 30 mm prepared by EBFZM at different growth mechanisms
[1] Zee R H, Xiao Z, Chin B A, Liu J. J Mater Proc Technol, 2001; 113: 75
[2] Baars R E. Evolution of Refractory Metals and Alloys. Pennsyvania: The Minerals, Metals & Materials Society, 1994: 185
[3] Ohriner E K. Platinum Met Rev, 2008; 52: 186
[4] Verstraete M J, Christpehe C J. Appl Phys Lett, 2005; 86: 191917
[5] Glebovsky V G, Semonov V N. Int J Refractory Met Hard Mater, 1993-1994; 12: 295
[6] Glebovsky V G, Semonov V N. High Temp Mater Proc, 1995; 14: 121
[7] Hu Z W, Li Z K, Zhang Q, Zhang T J, Zhang J L, Yin T. Rare Met Mater Eng, 2007; 36: 367
(胡忠武, 李中奎, 张 清, 张廷杰, 张军良, 殷 涛. 稀有金属材料与工程, 2007; 36: 367)
[8] Glebovsky V G, Semonov V N, Lomeko V V. J Crystal Growth, 1989; 98: 487
[9] Duffar T. Crystal Growth Processes Based on Capillarity. Chichester: John Wiley & Sons Ltd, 2010: 204
[10] Virozub A, Rasin I G, Brandon S. J Cryst Growth, 2008; 310: 5416
[11] Satunkin G A. J Cryst Growth, 2005; 255: 170
[12] Johns L E, Narayanan R. Interfacial Instability. New York: Springer-Verlag, Inc., 2002: 8
[13] Keene B J. Int Mater Rev, 1993; 38: 157
[14] Jiang Q, Lu H M. Surf Sci Rep, 2008; 63: 427
[15] Wang H. Master Thesis, Northwestern Polytechncial University, Xi′an, 2007: 23
(王 红. 西北工业大学硕士学位论文, 西安, 2007: 23)
[16] Weinstein O, Brandon S. J Cryst Growth, 2004; 268: 299
[17] Ludge A, Riemann H, Wunscher M, Behr G, Loser W, Muiznieks A, Croll A. In: Duffar T ed., Crystal Growth Processes Based on Capillarity. Chichester: John Wiley & Sons Ltd, 2010: 203
[18] Min N B. Physical Fundamentals of Crystal Growth. Shanghai: Shanghai Science & Technology Press, 1982: 398
(闵乃本. 晶体生长的物理基础. 上海: 上海科学技术出版社, 1982: 398)
[19] Zhang Q, Li Z K, Zhen Y Z, Zhang J L, Hu Z W, Zhang T J, Yin T, Ding X F, Ding X. Rare Met Mater Eng, 2005; 34: 1498
(张 清, 李中奎, 郑玉柱, 张军良, 胡忠武, 张廷杰, 殷 涛, 丁学峰, 丁 旭. 稀有金属材料与工程, 2005; 34: 1498)
[20] Tiller W A. The Science of Crystallization:Microscopic Interfacial Phenomena. Cambridge: Cambridge University Press, 1991: 87
[1] Baojun ZHAO,Yuhong ZHAO,Yuanyang SUN,Wenkui YANG,Hua HOU. Effect of Mn Composition on the Nanometer Cu-Rich Phase of Fe-Cu-Mn Alloy by Phase Field Method[J]. 金属学报, 2019, 55(5): 593-600.
[2] Ting ZHANG,Yuhong ZHAO,Liwen CHEN,Jianquan LIANG,Muxi LI,Hua HOU. Graphene Nanoplatelets Reinforced Magnesium Matrix Composites Fabricated by Thixomolding[J]. 金属学报, 2019, 55(5): 638-646.
[3] Shuangming LI, Binqiang WANG, Zhenpeng LIU, Hong ZHONG, Rui HU, Yi LIU, Ximing LUO. Grain Orientation Competitive Growth of High Melting Point Metals Ir and Mo Under Electron Beam Floating Zone Melting[J]. 金属学报, 2018, 54(10): 1435-1441.
[4] TANG Ning, WANG Yanli, XU Qingyan, ZHAO Xihong, LIU Baicheng. NUMERICAL SIMULATION OF DIRECTIONAL SOLIDIFIED MICROSTRUCTURE OF WIDE-CHORD AERO BLADE BY BRIDGEMAN PROCESS[J]. 金属学报, 2015, 51(4): 499-512.
[5] GAO Ka, LI Shuangming, FU Hengzhi. MICROSTRUCTURE EVOLUTION AND ORIENTATION ANALYSIS OF HYPEREUTECTIC Al-Al2Cu ALLOY UNDER DIRECTIONAL SOLIDIFICATION[J]. 金属学报, 2014, 50(8): 962-970.
[6] TONG Wenhui WANG Jie ZHOU Jixue YANG Yuansheng. INCLUSIONS IN Mg-Gd-Y-Zr ALLOY MELTING UNDER THE GAS COVERAGE[J]. 金属学报, 2012, 48(1): 63-69.
[7] GUO Zhipeng XIONG Shoumei Mei Li John Allison. RELATIONSHIP BETWEEN METAL-DIE INTERFACIAL HEAT TRANSFER COEFFICIENT AND CASTING SOLIDIFICATION RATE IN HIGH PRESSURE DIE CASTING PROCESS[J]. 金属学报, 2009, 45(1): 102-106.
[8] Sang-Hyun CHO. EFFECTS OF ALLOY COMPOSITION AND PROCESS PARAMETERS ON THE HEAT TRANSFER COEFFICIENT AT METAL/DIE INTERFACE IN HIGH PRESSURE DIE CASTING[J]. 金属学报, 2008, 44(4): 433-439 .
[9] . [J]. 金属学报, 2007, 43(10): 1113-1120 .
[10] . [J]. 金属学报, 2007, 43(6): 607-611 .
[11] . Radiative Heat Transfer Calculation for Superalloy Turbine Blade in Directional Solidification Process[J]. 金属学报, 2007, 43(5): 465-471 .
[12] . STUDY ON INTERFACIAL HEAT TRANSFER COEFFICIENT BETWEEN METAL-DIE INTERFACE OF HIGH PRESSURE DIE CASTING PROCESS OF ALUMINUM ALLOY[J]. 金属学报, 2007, 42(1): 103-106 .
[13] . [J]. 金属学报, 2004, 40(11): 1170-1174 .
[14] . [J]. 金属学报, 2003, 39(3): 278-282 .
[15] . [J]. 金属学报, 2001, 37(1): 42-46 .
No Suggested Reading articles found!