Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (1): 63-69    DOI: 10.3724/SP.J.1037.2011.00593
论文 Current Issue | Archive | Adv Search |
INCLUSIONS IN Mg-Gd-Y-Zr ALLOY MELTING UNDER THE GAS COVERAGE
TONG Wenhui, WANG Jie, ZHOU Jixue, YANG Yuansheng
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

TONG Wenhui WANG Jie ZHOU Jixue YANG Yuansheng. INCLUSIONS IN Mg-Gd-Y-Zr ALLOY MELTING UNDER THE GAS COVERAGE. Acta Metall Sin, 2012, 48(1): 63-69.

Download:  PDF(10593KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  When smelting magnesium alloy under the protected conditions, it is unavoidable completely for magnesium alloy melt to react with the atmosphere, that the loose reaction products are separated very difficultly from the alloy melt. Finally, they become the inclusions in the alloy, to deteriorate the mechanical properties and performance. In this paper, in order to evaluate the inclusions in the new-style Mg-Gd-Y-Zr alloy and find an effective method of eliminating inclusions, the morphology, size distribution, species of inclusions and their formation in the alloy smelting and casting conventionally under gas coverage are analyzed. The settling behavior of the inclusions is also analyzed by the calculations. There are complex inclusion mainly composed of Mg or Y oxide and flux inclusion with spherical, cluster, irregular and linear shape in the Mg-Gd-Y-Zr alloy. The average size and volume fraction of them are 12.7 µm and 0.26%, respectively. The frequency of the inclusions dramatically decreases with their size increasing. The volume of inclusions less than 20 µm occupies nearly 85% of the total volume of inclusions, while the percentage of inclusions less than\linebreak 45 µm is 96%. The calculations show that the settling velocity of inclusions is dependent on their size and density, and increasing the inclusion density can diminish the maximal size of the inclusions in the magnesium alloy, which the maximal size by the calculations is consistent with the experimental result.
Key words:  Mg-Gd-Y-Zr alloy      inclusion      gas coverage     
Received:  20 September 2011     
ZTFLH: 

TF822 TG292

 
Fund: 

Supported by National Basic Research Program of China (No.2007CB613705)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00593     OR     https://www.ams.org.cn/EN/Y2012/V48/I1/63

[1] Lee S G, Patel G R, Gokhale A M, Sreeranganathan A, Horstemeyer M F. Scr Mater, 2005; 53(7): 851

[2] Liu G J, Wang Y, Fan Z Y. Mater Sci Eng, 2008; 472A: 251

[3] Hu B, Peng L M, Yang Y L, DingWJ. Mater Des, 2010; 31: 3901

[4] Stumphy B, Mudryk Y, Russell A, Herman D, Gschneidner K Jr. J Alloy Compd, 2008; 460: 363

[5] Yim C D, Kang N E, You B S. Met Mater Int, 2010; 16: 377

[6] Wang W W, Xu J W, Cao D F. Foundry Technol, 1991; 12(6): 15

(王薇薇, 徐介文, 曹达富. 铸造技术, 1991; 12(6): 15)

[7] Lu C, Wu G H, Cai C, Zeng K, Ding W J. Met Form Technol, 2002; 20(5): 5

(卢晨, 吴国华, 蔡超, 曾 克, 丁文江. 金属成形工艺, 2002; 20(5): 5)

[8] Liang M J, Wu G H, Ding W J, Wang W. Trans Nonferrous Met Soc China, 2011; 21: 717

[9] Wang J, Yang Y S, Tong W H. Trans Nonferrous Met Soc China, 2011; 21: 949

[10] Hu H, Luo A. JOM, 1996; 48(10): 47

[11] Eckert C E. Mod Cast, 1991; (4): 28

[12] Bakke P, Laulin J A, Provost A, Karlsen D O. In: Huglen R ed., Light Metals 1997. Orlando: Minerals, Metals & Materials Society, 1997: 1019

[13] Zhang S C, Wei B K, Lin H T. Foundry, 2003; 52: 488

(张诗昌, 魏伯康, 林汉同. 铸造, 2003; 52: 488)

[14] Zhao Y, Liu P P, Zhou H. Foundry, 2006; 55: 1085

(赵宇, 刘盼盼, 周 宏. 铸造, 2006; 55: 1085)

[15] Han Y F, Liu J R, Shen S J, Huang W D. Foundry Technol, 2006; 27: 613

(韩英芬, 刘建睿, 沈淑娟, 黄卫东. 铸造技术, 2006; 27: 613)

[16] Gao L, Chen R S, Han E H. Trans Nonferrous Met Soc China, 2011; 21: 863

[17] Wang J, Meng J, Zhang D P, Tang D X. Mater Sci Eng, 2007; A456: 78

[18] He S M, Zeng X Q, Peng L M, Guo X W, Chang J W, Ding W J. Mater Sci Forum, 2007; 546–549: 101

[19] Guo X T, Li P J, Zeng D B, Liu S X. Trans Nonferrous Met Soc China, 2004; 14: 1295

(郭旭涛, 李培杰, 曾大本, 刘树勋. 中国有色金属学报, 2004; 14: 1295)

[20] Zheng Y, Wu G H, Hou Z Q, Chen B, Wang Q L, Ding W J. Foundry, 2010; 59(1): 7

(郑韫, 吴国华, 侯正全, 陈 斌, 王其龙, 丁文江. 铸造, 2010; 59(1): 7)

[21] Li N, Liu J R, Wang S Q, Shen S J, Huang W D, Pang Y T. Foundry Technol, 2006; 27: 1133

(李娜, 刘建睿, 王栓强, 沈淑娟, 黄卫东, 逄玉台. 铸造技术, 2006; 27: 1133)

[22] Zhang J, He L J, Li P J. Foundry, 2005; 54: 665

(张军, 何良菊, 李培杰. 铸造, 2005; 54: 665)

[23] Jiang Y Y. Trans Chin Soc Agric Eng, 1996; 12(8): 12

(蒋亦元. 农业工程学报, 1996; 12(8): 12)

[24] Chen Z H, Yan H G, Chen J H, Quan Y J, Wang H M, Chen D. Magnesium Alloy. Beijing: Chemical Industry Press, 2004: 10

(陈振华, 严红革, 陈吉华, 全亚杰, 王慧敏, 陈鼎  编著. 镁合金. 北京: 化学工业出版社, 2004: 10)

[25] Mi G B, He L J, Li P J, Popel P S, Abaturov I S. Trans Nonferrous Met Soc China, 2009; 19: 1372

(弭光宝, 何良菊, 李培杰, Popel P S, Abaturov I S. 中国有色金属学报, 2009; 19: 1372)

[26] Cao Y Q. Master Thesis, Jilin University, Changchun, 2006

(曹永强. 吉林大学硕士学位论文, 长春, 2006)

[27] Li Z B. J Mater Metall, 2002; 1: 161

(李正邦. 材料与冶金学报, 2002; 1: 161)

[28] Keissling R. Non–Metallic Inclusions in Steel. London: Metals Society, 1978: 47
[1] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[2] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[3] SUN Yangting, LI Yiwei, WU Wenbo, JIANG Yiming, LI Jin. Effect of Inclusions on Pitting Corrosion of C70S6 Non-Quenched and Tempered Steel Doped with Ca and Mg[J]. 金属学报, 2022, 58(7): 895-904.
[4] LIU Jie, XU Le, SHI Chao, YANG Shaopeng, HE Xiaofei, WANG Maoqiu, SHI Jie. Effect of Rare Earth Ce on Sulfide Characteristics and Microstructure in Non-Quenched and Tempered Steel[J]. 金属学报, 2022, 58(3): 365-374.
[5] ZHU Miaoyong, DENG Zhiyin. Evolution and Control of Non-Metallic Inclusions in Steel During Secondary Refining Process[J]. 金属学报, 2022, 58(1): 28-44.
[6] TANG Haiyan, LIU Jinwen, WANG Kaimin, XIAO Hong, LI Aiwu, ZHANG Jiaquan. Progress and Perspective of Functioned Continuous Casting Tundish Through Heating and Temperature Control[J]. 金属学报, 2021, 57(10): 1229-1245.
[7] ZHOU Hongwei, BAI Fengmei, YANG Lei, CHEN Yan, FANG Junfei, ZHANG Liqiang, YI Hailong, HE Yizhu. Low-Cycle Fatigue Behavior of 1100 MPa Grade High-Strength Steel[J]. 金属学报, 2020, 56(7): 937-948.
[8] SUN Feilong, GENG Ke, YU Feng, LUO Haiwen. Relationship of Inclusions and Rolling Contact Fatigue Life for Ultra-Clean Bearing Steel[J]. 金属学报, 2020, 56(5): 693-703.
[9] ZHANG Xinfang, YAN Longge. Regulating the Non-Metallic Inclusions by Pulsed Electric Current in Molten Metal[J]. 金属学报, 2020, 56(3): 257-277.
[10] Tongbang AN,Jinshan WEI,Jiguo SHAN,Zhiling TIAN. Influence of Shielding Gas Composition on Microstructure Characteristics of 1000 MPa Grade Deposited Metals[J]. 金属学报, 2019, 55(5): 575-584.
[11] FENG Yefei,ZHOU Xiaoming,ZOU Jinwen,WANG Chaoyuan,TIAN Gaofeng,SONG Xiaojun,ZENG Weihu. Interface Reaction Mechanism Between SiO2 and Matrix and Its Effect on the Deformation Behavior of Inclusionsin Powder Metallurgy Superalloy[J]. 金属学报, 2019, 55(11): 1437-1447.
[12] Yu HUANG, Guoguang CHENG, You XIE. Modification Mechanism of Cerium on the Inclusions in Drill Steel[J]. 金属学报, 2018, 54(9): 1253-1261.
[13] Ge MA, Xiurong ZUO, Liang HONG, Yinglun JI, Junyuan DONG, Huihui WANG. Investigation of Corrosion Behavior of Welded Joint of X70 Pipeline Steel for Deep Sea[J]. 金属学报, 2018, 54(4): 527-536.
[14] Wen YANG,Lifeng ZHANG,Ying REN,Haojian DUAN,Ying ZHANG,Xianghui XIAO. QUANTITATIVE 3D CHARACTERIZATION ON OXIDE INCLUSIONS IN SLAB OF Ti BEARING FERRITIC STAINLESS STEEL USING HIGH RESOLUTION SYNCHROTRON MICRO-CT[J]. 金属学报, 2016, 52(2): 217-223.
[15] Tongbang AN,Zhiling TIAN,Jiguo SHAN,Jinshan WEI. EFFECT OF SHIELDING GAS ON MICROSTRUCTURE AND PERFORMANCE OF 1000 MPa GRADE DEPOSITED METALS[J]. 金属学报, 2015, 51(12): 1489-1499.
No Suggested Reading articles found!