Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (2): 129-147    DOI: 10.11900/0412.1961.2014.00396
Orignal Article Current Issue | Archive | Adv Search |
ADVANCES AND CHALLENGES OF TiAl BASE ALLOYS
YANG
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Download:  HTML  PDF(5410KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The history of research and development of γ-TiAl intermetallic alloys was outlined and divided into 4 stages: starting (1974~1985), revolutionary (1986~1995), emerging (1996~2005) and specialty materials (2006~). Major events and landmarks at the different stages were recounted to provide a framework for understanding scientific and technological progress. Key advances in the following 6 areas were reviewed: alloying, microstructure type, primary processing (melting), secondary processing (hot working), properties (including creep, fracture and fatigue, and oxidation), and tertiary processing (forming, covering both investment casting and near-net shape powder metallurgy). Future challenges were identified as follows: improvement of centrifugal casting technology, low-cost wrought process, development of third-generation alloys that meet design specifications, new applications based on new technologies, and viability of new forming routes such as additive manufacturing。
Key words:  γ-TiAl intermetallic alloy      cost-effective processing route      application      future challenge     
Received:  18 July 2014     
Fund: ;
Corresponding Authors:  Correspondent: YANG Rui, professor, Tel: (024)23971512, E-mail: ryang@imr.ac.cn   
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

YANG. ADVANCES AND CHALLENGES OF TiAl BASE ALLOYS. Acta Metall Sin, 2015, 51(2): 129-147.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00396     OR     https://www.ams.org.cn/EN/Y2015/V51/I2/129

Fig.1  

Ti-Al binary phase diagram[4]

Fig.2  

Typical stages of development of advanced materials[13]

Fig.3  

Relationship between microstructure and cooling rate of Ti-46Al-8Nb alloy[37]

Fig.4  

SEM image showing deformation and fragmentation of lamellae of Ti-47Al alloy single pass compressed to 70% with strain rate 0.01 s-1 at 1200 ℃[109]

Fig.5  

Schematic showing lamella fragmentation of γ -TiAl alloy[109]

(a) recrystallization of γ and spheroidization of α2 first occurred at colony boundaries, with inclined lamellae rotating to become horizontal and segmented

(b) hard-orientation lamellae segmented through bending and kinking

(c) grain refinement due to γ lamella fracture

(d) grain refinement due to γ recrystallization

Fig.6  

Hot extruded preforms of γ-TiAl (a) and car engine valves machined from the preforms (b) (Institute of Metal Research, CAS)

Fig.7  

Schematic diagrams illustrating texture evolution and formation of lamellar orientation during α solution treatment and subsequent cooling (The extrusion direction ED is horizontal and the transverse direction TD is vertical. The area of each color is roughly proportional to the intensity of the texture component it represents. The pairs of texture components of the α2 and γ phases that obey the Blackburn orientation relationship are indicated below the thermo-mechanically treated lamellar (TMTL) microstructure)[112]

Fig.8  

Process steps of investment casting process required for casting TiAl components[173]

Fig.9  

γ-TiAl low pressure turbine blade produced by centrifugal casting at the Institute of Metal Research, CAS

Fig.10  

γ-TiAl car engine pistons produced by centrifugal casting at the Institute of Metal Research, CAS

Fig.10  

γ-TiAl car engine connection rod produced by near net- shape powder metallurgy at the Institute of Metal Research, CAS

[1] McAndrew?J?B, Kessler?H?D. JOM, 1956; 10: 1348
[2] Shechtman D, Blackburn M J, Lipsitt H A. Metall Trans, 1974; 5: 1373
[3] Lipsitt H A, Shechtman D, Schafrik R E. Metall Trans, 1975; 6A: 1991
[4] Schuster J C, Palm M. J Phase Equilib Diffus, 2006; 27: 255
[5] Huang S C, Chesnutt J C. In: Westbrook J H, Fleischer R L eds., Structural Applications of Intermetallic Compounds. Chapter 4, New York: Wiley, 2000: 1
[6] Kainuma R, Palm M, Inden G. Intermetallics, 1994; 2: 321
[7] Ohnuma I, Fujita Y, Mitsui H, Ishikawa K, Kainuma R, Ishida K. Acta Mater, 2000; 48: 3113
[8] Suzuki A, Takeyama M, Matsuo T. Intermetallics, 2002; 10: 915
[9] Veeraraghavan D, Pilchowski U, Natarajan, B, Vasudevan V K. Acta Mater, 1998; 46: 405
[10] Witusiewicz V T, Bondar A A, Hecht U, Rex S, Velikanova T Ya. J Alloys Compd, 2008; 465: 64
[11] Blackburn M J, Smith M P. R&D on Composition and Processing of Titanium Aluminide Alloys for Turbine Engines, AFWAL-TR-82-4086, June, 1982
[12] Lipsitt H A. In: Koch C C, Liu C T, Stoloff N S eds., High-Temperature Ordered?Intermetallic?Alloys. Materials Research Society Symposia Procedings. Vol.39, Warrendale, PA: MRS, 1985: 351
[13] Dimiduk D M, Dutton R. Technical Report OMB No. 0704-0188, Materials and Manufacturing Directorate Air Force Research Laboratory, January, 2004
[14] National Research Council (NRC). Accelerating Technology Transition: Bridging the Valley of Death for Materials and Processes in Defense Systems. Washington: The National Academies Press, 2004: 1
[15] Aoki K, Izumi O. Nippon Kinzoku Gakkaishi, 1979; 43: 1190
[16] Liu C T, White C L, Horton J A. Acta Metall, 1985; 33: 213
[17] Djanarthany S, Viala J C, Bouix J. Mater Chem Phys, 2001; 72: 301
[18] Kim Y W, Wagner R, Yamaguchi M eds., Gamma Titanium Aluminides, Warrendale, PA: TMS, 1995: 1
[19] Kim Y W. JOM, 1989; 41(7): 24
[20] Kim Y W, Dimiduk D M. JOM, 1991; 43(8): 40
[21] Kim Y W. JOM, 1994; 46(7): 30
[22] Kim Y W. JOM, 1995; 47(7): 39
[23] Larsen D E Jr. Mater Sci Eng, 1996; A213: 128
[24] National Materials and Manufacturing Board. Materials Needs and Research and Development Strategy for Future Military Aerospace Propulsion Systems. Washington: National Academies Press, 2011: 188
[25] Sadler P, Kumar K S, Green J A S. Martin Marietta Laboratories Technical Report MML-TR-93-09, 1993
[26] Pollock T M, Steif P S. A University-Industry Partnership for Research and Transition of Gamma Titanium Aluminides: Final Report, AFRL-SR-BL-TR-01-0633, 1999
[27] Draper S L, Lerch B A, Pereira M, Miyoshi K, Arya V K, Zhuang W. Durability Assessment of Gamma TiAl–Final Report, NASA/TM-2004-212303, 2004
[28] Murtagian G R. PhD Dissertation, Georgia Institute of Technology, 2004
[29] Tetsui T. In: Kim Y W, Dimiduk D M, Loretto M H eds., Gamma Titanium Aluminides, Warrendale, PA: TMS, 1999: 15
[30] Wu X. Intermetallics, 2006; 14: 1114
[31] Gebauer K. Intermetallics, 2006; 14: 355
[32] European Commission DG Research and Innovation. Light-Weight Valves for High-Efficiency Engines, 2000-2004. http://ec.europa.eu / research/transport / projects / items /_livalves_european _ and _ chinese _ collaboration _ leads _ to _ possible_breakthrough_en.htm#content, Accessed February, 2012
[33] Appel F, Paul D H, Oehring M. Gamma Titanium Aluminide Alloys: Science and Technology. Weinheim, Germany: Wiley, 2011: 1
[34] Chen G L, Sun Z Q, Zhou X. Mater Sci Eng, 1992; A153: 597
[35] Paul J D H, Appel F, Wagner R. Acta Mater, 1998; 46: 1075
[36] Xu X J, Lin J P, Zhang L Q, Liang Y F. In: Kim Y W, Smarsly W, Lin J P, Dimiduk D eds., Gamma Titanium Aluminide, Warrendale, PA: TMS, 2014: 71
[37] Hu D, Huang A J, Gregoire A, Li X, Wu X, Loretto M. Mater Sci Forum, 2005; 29: 172
[38] Blackburn M J. In: Jaffee R, Promisel N eds., The Science, Technology and Applications of Titanium. London: Pergamon, 1970: 633
[39] Kumagai T, Abe E, Takeyama M, Nakamura M. Scr Mater, 1997; 36: 523
[40] Hu D, Huang A J, Novovic D, Wu X. Intermetallics, 2006; 14: 818
[41] Huang A J, Loretto M H, Hu D, Liu K, Wu X. Intermetallics, 2006; 14: 838
[42] Naka S. In: Nathal M V, Darolia R, Liu C T, Martin P L, Miracle D B, Wagner R, Yamaguchi M eds., Structural Intermetallics, Warrendale, PA: TMS, 1997: 313
[43] Burgers W G. Physica, 1934; 1: 561
[44] Kim Y W, Kim S L, Dimiduk D, Woodward C. In: Kim Y W, Morris D, Yang R, Leyens C eds., Structrural Applications for High Temperatures, Warrendale, PA: TMS, 2008: 215
[45] Clemens H, Chladil H F, Wallgram W, Zickler G A, Gerling R, Liss K D, Kremmer S, Güther V, Smarsly W. Intermetallics, 2008; 16: 827
[46] Wallgram W, Schm?lzer T, Cha L M, Das G, Güther V, Clemens H. Int J Mater Res, 2009; 100: 1021
[47] Huang Z W, Cong T. Intermetallics, 2010; 18: 161
[48] Norris G. Flight International 13th, Power House, June, 2006
[49] Bewlay B P, Weimer M, Kelly T, Suzuki A, Subramanian P R. In: Baker I, Heilmaier M, Kuma S, Yoshimi K eds., Intermetallic-Based Alloys—Science, Technology and Applications, Materials Research Society Symposia Procedings, Vol.1516, Warrendale, PA: MRS, 2013: 49
[50] McQuay P. In: Kim Y W, Smarsly W, Lin J P, Dimiduk D eds., Gamma Titanium Aluminide, Warrendale, PA: TMS, 2014: in press
[51] Javis D J, Voss D. Mater Sci Eng, 2005; A413-414: 583
[52] Heppener M, Minster O, Jarvis D J. Acta Astronaut, 2008; 63: 20
[53] European Space Agency. Final Report of IMPRESS Project: Publishable Executive Summary, 2009: 1
[54] Kim Y W, Dimiduk D M, Loretto M H eds., Gamma Titanium Aluminides, Warrendale, PA: TMS, 1999: 1
[55] Kim Y W, Clemens H, Rosenberger A H eds., Gamma Titanium Aluminide, Warrendale, PA: TMS, 2003: 1
[56] Kim Y W, Morris D, Yang R, Leyens C eds., Structural Aluminides for Elevated Temperatures, Warrendale, PA: TMS, 2008: 1
[57] Kim Y W, Smarsly W, Lin J P, Dimikuk D eds., Gamma Titanium Aluminide, Warrendale, PA: TMS, 2014: 1
[58] Hanamura T, Uemori R, Tanino M. J Mater Res, 1988; 3: 656
[59] Huang S C, Hall E L. Metall Trans, 1991; 22A: 2619
[60] Kawabata T, Tamura T, Izumi O. Metall Trans, 1993; 24A: 141
[61] Sun F S, Cao C X, Kim S E, Lee Y T, Yan M G. Metall Mater Trans, 2001; 32A: 1573
[62] Beddoes J, Seo D Y, Chen W R, Zhao L. Intermetallics, 2001; 9: 915
[63] Huang Z W, Voice W, Bowen P. In: Hemker K J, Dimiduk D M, Clemens H, Darolia R, Inui H, Larsen J M, Sikka V K, Thomas M, Whittenberger J D eds., Structural Intermallics, Warrendale, PA: TMS, 2001: 551
[64] Stark A, Oehring M, Pyczak F, Schrreyer A. Adv Eng Mater, 2011; 13: 700
[65] Yu R, He L L, Cheng Z Y, Zhu J, Ye H Q. Intermetallics, 2002; 10: 661
[66] Paul J D H, Appel F, Wagner R. Acta Mater, 1998; 46: 1075
[67] Zhang W J, Deevi S C, Chen G L. Intermetallics, 2002; 10: 403
[68] Fr?bel U, Appel F. Acta Mater, 2002; 50: 3693
[69] Woodward C, Kajihara S A, Rao S I, Dimiduk D M. In: George E P, Mills M J, Yamaguchi M eds., High-Temperature Ordered Intermetallic Alloys VIII. Warrendale, PA: MRS, 1999: KK281
[70] Li Y J, Hu Q M, Xu D S, Yang R. Intermetallics, 2011; 19: 793
[71] Hao Y L, Xu D S, Cui Y Y, Yang R, Li D. Acta Mater, 1999; 47: 1129
[72] Yang R. In: Kim Y W, Smarsly W, Lin J P, Dimiduk D eds., Gamma Titanium Aluminide, Warrendale, PA: TMS, 2014: 123
[73] Bryant J D, Christodoulou L, Maisano J R. Scr Metall Mater, 1990; 24: 33
[74] Cheng T T. Intermetallics, 2000; 8: 29
[75] Hu D. Intermetallics, 2001; 9: 1037
[76] Hecht U, Witusiewicz V, Drevermann A, Zollinger J. Intermeta-llics, 2008; 16: 969
[77] Kitkamthorn U, Zhang L C, Aindow M. Intermetallics, 2006; 14: 759
[78] Lindemann J, Glavatskikh M, Leyens C, Ross-Fagaraseanu D. In: Kim Y W, Morris D, Yang R, Leyens C eds., Structural Aluminides for Elevated Temperatures, Warrendale, PA: TMS, 2008: 257
[79] Chen S, Beaven P A, Wagner R. Scr Metall Mater, 1992; 26: 1205
[80] Tian W H, Sano T, Nemoto M. Philos Mag, 1993; 68A: 965
[81] Appel F, Fischer F D, Clemens H. Acta Mater, 2007; 55: 4915
[82] Tsuyama S, Mitao S, Minakawa K N. Mater Sci Eng, 1992; A153: 451
[83] Noda T, Okabe M, Isobe S, Sayashi M. Mater Sci Eng, 1995; A192-193: 774
[84] Yu R, He L L, Guo J T, Ye H Q, Lupinc V. Acta Mater, 2000; 48: 3701
[85] Huguet A, Menand A. Appl Surf Sci, 1994; 76-77: 191
[86] Neroc-Partaix A, Menand A. Scr Mater, 1996; 35: 199
[87] Kawabata T, Tadano M, Izumi O. Scr Metall, 1988; 22: 1725
[88] Kawabata T, Abumiya T, Izumi O. Acta Metall Mater, 1992; 40: 2557
[89] Ponchel A. PhD Dissertation, Universite Pierre et Marie Curie Paris VI, 2001
[90] Thomas M, Bacos M P. Aerosp Lab, 2011; 3: 1
[91] Grange M, Raiart J L, Thomas M. Metall Mater Trans, 2004; 35A: 2087
[92] Clemens D R. In: Hemker K J, Dimiduk D M, Clemens H, Darolia R, Inui H, Larsen J M, Sikka V K, Thomas M, Whittenberger J D eds., Structrual Intermetallics 2001, Warrendale, PA: TMS, 2001: 217
[93] De Graef M, Biery N, Rishel L, Pollock T M, Cramb A. In: Kim Y W, Dimiduk D M, Loretto M H eds., Gamma Titanium Aluminides, Warrendale, PA: TMS, 1999: 247
[94] Johnson D R, Inui H, Yamaguchi M. Intermetallics, 1998; 6: 647
[95] Küstner V, Oehring M, Chatterjee A, Güther V, Brokmeier H G, Clemens H, Appel F. In:?Kim Y W, Clemens H, Rosenberger A H eds., Gamma Titanium Aluminides, Warrendale, PA: TMS, 2003: 89
[96] Hecht U, Daloz D, Lapin J, Drevermann A, Witusiewicz V T, Zollinger J. In: Palm M, Bewlay P B, He Y H, Takeyama M, Wiezorek J M K eds., Mater Research Society Symposium Proceedings, Warrendale, PA: MRS, 2009: paper No.1128-U03-01
[97] Jung J Y, Park J K, Chun C H. Intermetallics, 1999; 7: 1033
[98] Eiken J, Appel M, Witsuiewicz V T, Zollinger J, Hecht U. J Phys Condens Matter, 2009; 21: 464104
[99] Kim J H, Shin D H, Semiatin S L, Lee C S. Mater Sci Eng, 2003; A344: 146
[100] Seetharaman V, Semiatin S L. Metall Mater Trans, 2002; 33A: 3817
[101] Cahn R W, Takeyama M, Horton J A, Liu C T. J Mater Res, 1991; 6: 57
[102] Yang R, Botton G A, Cahn R W. Acta Mater, 1996; 44: 3869
[103] Semiatin S L, Chesnutt J C, Austin C, Seetharaman V. In: Nathal M V, Darolia R, Liu C T, Martin P L, Miracle D B, Wagner R, Yamaguchi M eds., Structural Intermetallics, Warrendale, PA: TMS, 1997: 263
[104] Fukutomi H, Nomoto A, Osuga Y, Ikeda S, Mecking H. Intermetallics, 1996; 4: S49
[105] Salishchev G A, Imayev R M, Senkov O N, Imayev V M, Gabdullin N K, Shagiev M R, Kuznetsov A V, Froes F H. Mater Sci Eng, 2000; A286: 236
[106] Imayev R M, Salishchev G A, Imayev V M, Shagiev M R, Kuznetsov M R, Appel F, Oehring M, Senkov O N, Froes F H. In: Kim Y W, Dimiduk D M, Loretto M H eds., Gamma Titanium Aluminides, Warrendale, PA: TMS, 1999: 565
[107] Imayev R M, Imayev V M, Oehring M, Appel F. Metall Mater Trans, 2005; 36A: 859
[108] Fr?bel U, Appel F. Metall Mater Trans, 2007; 38A: 1817
[109] Sun W. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2009 (孙 伟. 中国科学院金属研究所博士学位论文, 沈阳, 2009)
[110] Oehring M, Lorenz U, Niefanger R, Christoph U, Appe F, Wagner R, Clemens H, Eberhardt N. In: Kim Y W, Dimiduk D M, Loretto M H eds., Gamma Titanium Aluminides, Warrendale, PA: TMS, 1999: 439
[111] Oehring M, Lorenz U, Appel F, Roth-Fagaraseanu D. In: Hemker K J, Dimiduk D M, Clemens H, Darolia R, Inui H, Larsen J M, Sikka V K, Thomas M, Whittenberger J D eds., Structural Intermetallics, Warrendale, PA: TMS, 2001: 157
[112] Liu R C, Liu D, Tan J, Cui Y Y, Yang R, Liu F Y, Withey P A. Intermetallics, 2014; 52: 110
[113] Doherty R D, Hughes D A, Humphreys F J, Jonas J J, Jensen D J, Kassner M E, King W E, McNelley T R, McQueen H J, Rollett A D. Mater Sci Eng, 1997; A238: 219
[114] Brokmeier H G, Oehring M, Lorenz U, Clemens H, Appel F. Metall Mater Trans, 2004; 35A: 3563
[115] Zhang W J, Deevi S C. In: Hemker K J, Dimiduk D M, Clemens H, Darolia R, Inui H, Larsen J M, Sikka V K, Thomas M, Whittenberger J D eds., Structural Intermetallics, Warrendale, PA: TMS, 2001: 699
[116] Veyssière P. Mater Sci Eng, 2001; A309-310: 44
[117] Es-Souni M, Bartels A, Wagner R. Mater Sci Eng, 1995; A192-193: 698
[118] Worth D B, Jones J W, Allison J E. Metall Trans, 1995; 26A: 2947
[119] Morris M A, Leboeuf T. Intermetallics, 1997; 5: 339
[120] Wang J G, Hsiung L M, Nieh T G. Scr Mater, 1998; 39: 957
[121] Maruyama K, Yamamoto R, Nakakuki H, Fujitsuna N. Mater Sci Eng, 1997; A239-240: 419
[122] Parthasarathy T A, Subramanian P R, Mendiratta M G, Dimiduk D M. Acta Mater, 2000; 48: 541
[123] Hayes R W, Martin P L. Acta Metall Mater, 1995; 43: 2761
[124] Zhang W J, Spigarelli S, Cerri E, Evangelista E, Francesconi L. Mater Sci Eng, 1996; A211: 15
[125] Du X W, Zhu J, Kim Y W. Intermetallics, 2001; 9: 137
[126] Appel F. Intermetallics, 2001; 9: 907
[127] Es-Souni M, Bartels A, Wagner R. Acta Metall Mater, 1995; 43: 153
[128] Zhang W J, Deevi S C. Intermetallics, 2003; 11: 177
[129] Taniguchi S, Hongawara N, Shibata T. Mater Sci Eng, 2001; A307: 107
[130] Brady M P, Smialek J L, Humphrey D L, Smith J. Acta Mater, 1997; 45: 2371
[131] Zeller A, Dettenwanger F, Schütze M. Intermetallics, 2002; 10: 59
[132] Rahmel A, Quadakkers W J, Schütze M. Mater Corros, 1995; 46: 271
[133] Quadakkers W J, Schaaf P, Zheng N, Gil A, Wallura E. Mater Corros, 1997; 48: 28
[134] Zhu L G, Hu Q M, Yang R, Ackland G J. J Phys Chem, 2012; 116C: 24201
[135] Schmiedgen M, Graat P C J, Baretzky B, Mittemeijer E J. Thin Solid Films, 2002; 415: 114
[136] Song Y, Dai J H, Yang R. Surf Sci, 2012; 606: 852
[137] Song Y, Xing F J, Dai J H, Yang R. Intermetallics, 2014; 49: 1
[138] Lang C, Schutze M. Oxid Met, 1996; 46: 284
[139] Ping F P, Hu Q M, Yang R. Acta Metall Sin, 2013; 49: 385 (平发平, 胡青苗, 杨 锐. 金属学报, 2013; 49: 385)
[140] Li X Y, Taniguchi S. Intermetallics, 2004; 12: 11
[141] Kumagai M, Shibue K, Kim M S, Furuyama T. US Pat, 5,451,366., 1995
[142] Masset P J, Neve S, Zschau H E, Schütze M. Mater Corros, 2008; 59: 609
[143] Deve H E, Evans A G. Acta Metall Mater, 1991; 39: 1171
[144] Mitao S, Tsuyama S, Minakawa K. Mater Sci Eng, 1991; A143: 51
[145] Chan K S, Kim Y W. Acta Metall Mater, 1995; 43: 439
[146] Song Y, Xu D S, Yang R, Li D, Hu Z Q. Intermetallics, 1998; 6: 157
[147] Song Y, Yang R, Li D, Hu Z Q, Guo Z X. Intermetallics, 2000; 8: 563
[148] Song Y, Guo Z X, Yang R, Li D. Comput Mater Sci, 2002; 23: 55
[149] Yoo M H, Fu C L. Mater Sci Eng, 1992; A153: 470
[150] Yoo M H, Zou J, Fu C L. Mater Sci Eng, 1995; A192-193: 14
[151] Nakano T, Kawanaka T, Yasuda H Y, Umakoshi Y. Mater Sci Eng, 1995; A194: 43
[152] Yokoshima S, Yamaguchi M. Acta Mater, 1996; 44: 873
[153] Appel F. Philos Mag, 2005; 85: 205
[154] Lorenz U, Appel F, Wagner R. Mater Sci Eng, 1997; A234-236: 846
[155] Sastry S M L, Lipsitt H A. Metall Trans, 1977; 8A: 299
[156] Larsen J M. In: Kim Y W, Dimiduck D M, Loretto M eds., Gamma Titanium Aluminides, Warrendal, PA: TMS, 1999: 463
[157] Vaidya W V, Schwalbe K H, Wagner R. In: Kim Y W, Wagner R, Yamaguchi M eds., Gamma Titanium Aluminides, Warrendale, PA: TMS, 1995: 867
[158] Trail S J, Bowen P. Mater Sci Eng, 1995; A193: 427
[159] Harding T S, Jones J W. Scr Mater, 2000; 43: 623
[160] Draper S L, Lerch B A, Pereira J M, Nathal M V, Nazmy M Y, Staubli M. In: Hemker K J, Dimiduk D M, Clemens H, Darolia R, Inui H, Larsen J M, Sikka V K, Thomas M, Whittenberger J D eds., Structural Intermetallics, Warrendale, PA: TMS, 2001: 295
[161] Harding T S, Jones J W. Metall Mater Trans, 2001; 32A: 2975
[162] Umakoshi Y, Yasuda H Y, Nakano T. Intermetallics, 1996; 4: S65
[163] Recina V. Mater Sci Technol, 2000; 16: 333
[164] Gloanec A L, Bertheau D, Jouiad M, Henaff G, Grange M, Belaygue P. In: Kim Y W, Rosenberger A H, Clemens H eds., Gamma Titanium Aluminides, San Diego, CA: TMS, 2003: 485
[165] Park Y S, Nam S W, Hwang S K. Mater Lett, 2002; 53: 392
[166] Appel F, Heckel T K, Christ H J. Int J Fatigue, 2010; 32: 792
[167] Hénaff G, Gloanec A L. Intermetallics, 2005; 13: 543
[168] Hénaff G, Tonneau A, Mabru C. In: Hemker K J, Dimiduk D M, Clemens H, Darolia R, Inui H, Larsen J M, Sikka V K, Thomas M, Whittenberger J D eds., Structural Intermetallics 2001, Warrendale, PA: TMS, 2001: 571
[169] Kruzic J J, Campbell J P, McKelvey A L, Choe H, Ritchi R O. In: Kim Y W, Dimiduk D M, Loretto M H eds., Gamma Titanium Aluminides, Warrendale, PA: TMS, 1999: 495
[170] Campbell J P, Kruzic J J, Lillibridge S, Venkateswara Rao K T, Ritchie R O. Scr Mater, 1997; 37: 707
[171] McQuay P A, Sikka V K. In: Westbrook J H, Fleischer R L eds., Intermetallic Compounds—Principles and Practice. Vol.3, London: Wiley, 2002: 591
[172] Harding R A, Wickins M, Wang H, Djambazov G, Pericleous K A. Intermetallics, 2011; 19: 805
[173] Aguilar J, Schievenbusch A, K?ttlitz O. Intermetallics, 2011; 19: 757
[174] Oehring M, Appel F, Paul J D H, Imayev R M, Imaye V M, Lorenz U. Mater Sci Forum, 2010; 638-642: 1394
[175] Hu D, Jiang H, Wu X. Intermetallics, 2009; 17: 744
[176] Imayev R M, Imayev V M, Oehring M, Appel F. Intermetallics, 2007; 15: 451
[177] Thomas M, Raviart J L, Popoff F. Intermetallics, 2005; 13: 944
[178] Clemens H, Kestler H, Eberhardt N, Knabl W. In: Kim Y W, Dimiduk D M, Loretto M H eds., Gamma Titanium Aluminides, Warrendale, PA: TMS, 1999: 209
[179] Gerling R, Clemens H, Schimansky F P. Adv Eng Mater, 2004; 6: 23
[180] Graves J A, Perepezko J H, Ward C H, Froes F H. Scr Metall, 1987; 21: 567
[181] Huang A, Hu D, Loretto M H, Mei J, Wu X. Scr Mater, 2007; 56: 253
[182] Xu L, Bai C G, Liu D, Sun W, Yu D J, Cui Y Y, Yang R. In: Kim Y W, Morris D, Yang R, Leyens C eds., Structural Aluminides for Elevated Temperatures, Warrendale, PA: TMS, 2008: 179
[183] Xu L, Wu J, Cui Y Y, Yang R. In: Kim Y W, Smarsly W, Lin J P, Dimiduk D eds., Gamma Titanium Aluminide, Warrendale, PA: TMS, 2014: 195
[184] Integrated Computational Materials Engineering (ICME). Implementing ICME in the Aerospace, Automotive and Maritime Industries. Warrendale, PA: TMS, 2013: 1
[185] Lasalmonie A. Intermetallics, 2006; 14: 1123
[186] Inui H, Oh M H, Nakamura A, Yamaguchi M. Acta Metall Mater, 1992; 40: 3095
[187] Yokoshima S, Yamaguchi M. Acta Mater, 1996; 44: 873
[188] Jin H, Liu R H, Cui Y Y, Xian Q G, Xu D S, Yang R. In: Kim Y W, Smarsly W, Lin J P, Dimiduk D eds., Gamma Titanium Aluminide, Warrendale, PA: TMS, 2014: 143
[189] Couret A, Molenat G, Galy J, Thomas M. Intermetallics, 2008; 16: 1134
[190] Moll J H, Whitney E, Yolton C F, Habel U. In: Kim Y W, Dimiduk D M, Loretto M H eds., Gamma Titanium Aluminides, Warrendale, PA: TMS, 1999: 255
[191] Srivastava D, Chang I T H, Loretto M H. In: Kim Y W, Dimiduk D M, Loretto M H eds., Gamma Titanium Aluminides, Warrendale, PA: TMS, 1999: 265
[192] Murr L E, Gaytan S M, Ceylan A, Martinez E, Martinez J L, Hernandez D H, Bachado B I, Ramirez D A, Medina F, Collins S, Wicker R B. Acta Mater, 2010; 58: 1887
[193] Porter J, Wooten J, Harrysson O, Knowlson K. Materials Science and Technology—Association for Iron & Steel Technology. Vol.2, Warrendal, PA: Association for Iron & Steel Technology, 2011: 1434
[194] Franzén S F, Karlsson J. Diploma Work No.37/2010, Chalmers University of Technology, Sweden, 2010
[195] Terner M, Biamino S, Epicoco P, Penna A, Hedin O, Sabbadini S, Fino P, Pavese M, Ackelid U, Gennaro P, Pelissero F, Badni C. Steel Res Int, 2012; 83: 943
[196] Biamino S, Kl?den B, Weissg?rber T, Kieback B, Ackelid U. Franuhofer Direct Digital Manufacturing Conference, Berlin, Germany: DDMC, 2014: 1
[197] Leyens C, Frückner F, Nowotny S. Presented at TMS Symposium on Gamma Titanium Aluminide, 16-20 February 2014, San Diego, USA
[198] Jüchter V, Schwerdtfeger J, K?rner C. Presented at TMS Symposium on Gamma Titanium Aluminide, 16-20 February 2014, San Diego, USA
[199] European Science Foundation, Materials Science and Engineering Expert Committee (MatSEEC). Materials Science and Engineering in Europe: Challengers and Opportunities. Science Position Paper, November, 2013
[200] Gartner′s 2012 Hype Cycle for Emerging Technologies Identifies ‘Tipping Point’ Technologies That Will Unlock Long-Awaited Technology Scenarios. http://www.gartner.com/newsroom/id/2124315 9 (accessed 2014.06.10)
[201] Harrop J. Application of 3D Printing 2014-2024: Forcasts, Markets, Players. IDTechEx Report, 2014
[1] CHEN Yuyong, JIA Yi, XIAO Shulong, TIAN Jing, XU Lijuan. REVIEW OF THE INVESTMENT CASTING OF TiAl-BASED INTERMETALLIC ALLOYS[J]. 金属学报, 2013, 49(11): 1281-1285.
[2] SONG Yuquan JIA Hongjie XU Jin GUAN Xiaofang. STRUCTURAL CERAMICS AND THEIR SUPERPLASTICITY  I. Introduction of Structural Ceramics[J]. 金属学报, 2009, 45(1): 1-5.
No Suggested Reading articles found!