Please wait a minute...
金属学报  2009, Vol. 45 Issue (8): 956-963    
  论文 本期目录 | 过刊浏览 |
基于微观偏析统一模型及Thermo--Calc的三元合金凝固路径耦合计算
赵光伟1;徐达鸣1;宋梦华1;傅恒志1;杜勇2;贺跃辉2
1.哈尔滨工业大学材料科学与工程学院; 先进材料特种凝固加工研究所; 哈尔滨 150001
2.中南大学粉末冶金国家重点实验室; 长沙 410083
THERMO–CALC LINKED COMPUTATIONS OF SOLIDIFICATION PATHS OF TERNARY ALLOYS USING AN EXTENDED UNIFIED MICROSEGREGATION MODEL
ZHAO Guangwei1; XU Daming1; SONG Menghua1; FU Hengzhi1; DU Yong2; HE Yuehui2
1.Institute of Solidification Processing of Materials; School of Materials Science and Engineering; Harbin Institute of Technology; Harbin 150001
2.State Key Laboratory of Powder Metallurgy; Central South University; Changsha 410083
引用本文:

赵光伟 徐达鸣 宋梦华 傅恒志 杜勇 贺跃辉. 基于微观偏析统一模型及Thermo--Calc的三元合金凝固路径耦合计算[J]. 金属学报, 2009, 45(8): 956-963.
, , , , , . THERMO–CALC LINKED COMPUTATIONS OF SOLIDIFICATION PATHS OF TERNARY ALLOYS USING AN EXTENDED UNIFIED MICROSEGREGATION MODEL[J]. Acta Metall Sin, 2009, 45(8): 956-963.

全文: PDF(1734 KB)  
摘要: 

将合金凝固微观偏析统一模型推广到三元合金凝固微观偏析的预测, 并提出了能够计算三元匀晶与共晶合金凝固路径的数值计算方法. 实现了在源代码层次上与热力学计算软件Thermo-Calc及其数据库的耦合, 以获取多元合金凝固路径计算所需的凝固热力学数据. 通过Fe-40V-40Cr, Al-4.5Cu-1.0Si, Al-10Cu-2.5Mg和Al-1.49Si-0.64Mg(质量分数, %)等多元/多相合金在不同冷速下凝固路径的实例计算, 以及与相应的凝固组织定量金相实验结果对比, 验证了本文多元/多相凝固模型和算法的正确性.

关键词 多元/多相凝固路径 微观偏析 Thermo-Calc耦合计算多元铝合金    
Abstract

A model for predicting the microsegregation of ternary alloys was developed via extending a previously proposed unified microsegregation model for binary alloys. The present multicomponent/multiphase model retains the advanced features of the previous binary microsegregation model, in which the unified microscale parameter Φ takes a general function form to account for more possible influential factors, including the partition coefficient, solid fraction, solid diffusion coefficient, dendrite geometrical morphologies and solidification rate, etc.

The algorithms fr cacuating the solidification paths of ternary isomorphous and eutectic alloys were proposed, which closely couples with a commercial software package/database of Thermo–Calcvia its TQ6–interface in order to directly access to thermodynamic data needed in the multicomponent/multiphase solidification path computations. In the solidification of primary phase and three phases eutectic, solid fraction fs was selected to be a control variable when solving the equations of the microsegregation models, while in the solidification of two phases eutectic, temperature was selected to be a control variable as the relationship between the concentrations of solutes B and C was unknown. In each calculation iterative step, the names and number of the equilibrium phases were obtained from Thermo–Calc, and then saved and compared with the calculation results of the previous step. As the names and number of the equilibrium phases in each solidification stage of ternary eutectic alloys are different, the three solidification types were determined by comparing with the results in the computation process.

The availability and reliability of the proposed multicomponent/multiphase model and algorithms were demonstrated by sample computations for the solidification paths of Fe–40V–40Cr, Al–4.5Cu–1Si, Al–10Cu–2.5g and Al–1.49Si–0.64Mg (mass fraction, %) alloys under different solidification/cooling rates, and by comparisons with the experimental results of quantitative measurementof corresponding solidification microstructures.

Key wordsmulticomponent/multiphase solidification path    microsegregtion    Thermo–Calc coupled calculation    multicomponent Al alloys
收稿日期: 2009-01-16     
ZTFLH: 

TG224

 
基金资助:

中南大学粉末冶金国家重点实验室开放课题资助项目2008112042

作者简介: 赵光伟, 男, 1981年生, 博士生

[1] Fujii T, Poirier D R, Flemings M C. Metall Trans, 1979; 10B: 331
[2] Mehrabian R, Flemings M C. Metall Trans, 1970; 1: 455
[3] Cornelissen M C M. Ironmaking Steelmaking, 1986; 13(4): 204
[4] Ro´osz A, Exner H E. Acta Matall Mater, 1990; 38: 375
[5] Xie F Y, Kraft T, Zuo Y, Moon C H, Chang Y A. Acta Mater, 1999; 47: 489
[6] Kraft T, Rettenmayr M, Exner H E. Modell Simul Mater Sci Eng, 1996; 4: 161
[7] Zhao G W, Xu D M, Fu H Z. Int J Mater Res, 2008; 128: 680
[8] Vuˇsanovi´c I, ˇ Sarler B, Krane M J M. Mater Sci Eng, 2005; A413–414: 217
[9] Jie W Q, Zhang R J, Zhi H. Mater Sci Eng, 2005; A413–414:497
[10] Larouche D. Calphad, 2007; 31: 490
[11] Du Q, Jacot A. Acta Mater, 2005; 53: 3479
[12] Xu D M. Metall Mater Trans, 2001; 32B: 1129
[13] Xu D M, Fu H Z, Guo J J, Jia J, Li Q C. J Harbin Inst Technol, 2003; 35: 1156
(徐达鸣, 傅恒志, 郭景杰, 贾 钧, 李庆春. 哈尔滨工业大学学报, 2003; 35: 1156)
[14] Xu D M, Guo J J, Fu H Z. in Jones ed., SP07–Proceedings of the 5th Decennial International Conference on Solidification Processing, Sheffield: University of Sheffield, 2007: 94
[15] Song M H, Master Disertation, Harbin Institute of technology, Harbin, 2008
(宋梦华. 哈尔滨工业大学硕士论文, 哈尔滨, 2008)
[16] Wu B Y, Wang M D, Ding X H, LI D H. Theory of Numerical Analysis. Beijing: Science Press, 2003: 11
(吴勃英, 王德明, 丁效华, 李道华. 数值分析原理. 北京: 科学出版社, 2003: 11)
[17] Xu D M. Metall Mater Trans, 2002; 33B: 451
[18] Ganesan M, Thuinet L, Dye D, Lee P D. Metall Mater Trans, 2007; 38B: 557
[19] Dor´e X, Combeau H, Rappaz M. Acta Mater, 2000; 48: 3951
[20] Mondolfo L F. Aluminum Alloys: Structure and Properities. London: Butterworths, 1976: 253
[21] Thermo–Calc Software A B. ThermoCalc Software User’Guid (Version R). Stockholm Technology Park, 2006

[1] 刘杨,王磊,宋秀,梁涛沙. DD407/IN718高温合金异质焊接接头的组织及高温变形行为[J]. 金属学报, 2019, 55(9): 1221-1230.
[2] 钟华,李传军,王江,任忠鸣,钟云波,玄伟东. 强磁场对定向凝固Al-4.5Cu合金微观偏析的影响*[J]. 金属学报, 2016, 52(5): 575-582.
[3] 闫二虎,孙立贤,徐芬,徐达鸣. 基于Thermo-Calc和微观偏析统一模型对Al-6.32Cu-25.13Mg合金凝固路径的预测*[J]. 金属学报, 2016, 52(5): 632-640.
[4] 窦坤, 卿家胜, 王雷, 张晓峰, 王宝, 刘青, 董洪标. 基于微观偏析模型的连铸方坯内裂纹敏感性研究[J]. 金属学报, 2014, 50(12): 1505-1512.
[5] 赵光伟 李新中 徐达鸣 傅恒志 杜勇 贺跃辉. 三元合金单相凝固路径的统一解析模型[J]. 金属学报, 2011, 47(9): 1135-1140.
[6] 陈丹丹 张海涛 王向杰 崔建忠. 低频电磁铸造Al-4.5%Cu合金微观偏析研究[J]. 金属学报, 2011, 47(2): 185-190.
[7] 王刚 郑卓 常立涛 徐磊 崔玉友 杨锐. TiAl预合金粉末的表征和后续致密化显微组织特点[J]. 金属学报, 2011, 47(10): 1263-1269.
[8] 杨初斌 刘林 赵新宝 刘刚 张军 傅恒志. <001>和<011>取向DD407单晶高温合金枝晶间距和微观偏析[J]. 金属学报, 2011, 47(10): 1246-1250.
[9] 甘春雷 刘雪峰 黄海友 谢建新. BFe10-1-1合金管材连续定向凝固制备工艺及组织力学性能[J]. 金属学报, 2010, 46(12): 1549-1556.
[10] 蔡兆镇 朱苗勇 . 钢凝固两相区溶质元素的微观偏析及其对连铸坯表面纵裂纹的影响[J]. 金属学报, 2009, 45(8): 949-955.
[11] 黄太文 刘林 张卫国 张军 傅恒志. 抽拉速率跃迁对定向凝固单晶高温合金DD3一次枝晶间距和微观偏析的影响[J]. 金属学报, 2009, 45(10): 1225-1231.
[12] 张会全; 郑少波; 郑庆; 刘自立; 蒋国昌 . 钢液凝固过程中微观偏析和钛氧夹杂生成的耦合模型[J]. 金属学报, 2006, 42(7): 745-750 .
[13] 陈福义; 介万奇 . Al--Cu--Zn合金微观偏析的实验和Scheil模型研究[J]. 金属学报, 2004, 40(6): 664-.
[14] 钟勇; 阎德胜; 苏国跃; 杨柯 . LY12合金的挤压铸造微观偏析及改善方法[J]. 金属学报, 2001, 37(1): 42-46 .
[15] 韩志强; 蔡开科 . 连铸坯中微观偏析的模型研究[J]. 金属学报, 2000, 36(8): 869-873 .