Please wait a minute...
金属学报  2007, Vol. 43 Issue (8): 785-790     
  论文 本期目录 | 过刊浏览 |
中碳钢过冷奥氏体形变过程中碳的分布与扩散
陈国安;杨王玥;孙祖庆;张湘义
北京科技大学材料科学与工程学院
The distribution and diffusion of carbon atoms during deformation of undercooled austenite in medium carbon steel
北京科技大学
引用本文:

陈国安; 杨王玥; 孙祖庆; 张湘义 . 中碳钢过冷奥氏体形变过程中碳的分布与扩散[J]. 金属学报, 2007, 43(8): 785-790 .

全文: PDF(659 KB)  
摘要: 利用热模拟压缩变形实验以及SEM、XRD和热磁法, 研究了中碳钢过冷奥氏体变形时组织演变过程中碳原子的分布与扩散. 结果表明, 动态相变过程中碳的有效扩散系数与等温过程相比明显增大, 相变完成时间显著缩短. 在随后的片层状珠光体的球化过程中, 相界以及形变过程中产生的高密度位错和空位等缺陷促进了间隙碳原子的扩散, 使得球化动力学过程与等温退火相比显著缩短. 渗碳体的溶解和铁素体中碳的过饱和现象得到证实, 其中过饱和碳原子高度聚集在铁素体晶界和位错核心处, 而不是均匀地分布在铁素体点阵的间隙位置.
关键词 中碳钢碳原子扩散系数位错核心    
Abstract:The distribution and diffusion of carbon atoms during deformation of undercooled austenite in the medium carbon steel were investigated by means of uniaxial hot compression simulation experiment and SEM, XRD, thermomagnetic methods. The experimental results showed that the effective diffusion coefficient of the carbon atoms during dynamic transformation of undercooled austenite increased significantly compared with that during the isothermal transformation at the same temperature, as a result the completion of ferrite and pearlite transformation was shortened. During the subsequent spheroidization process of lamellae pearlite, high density dislocations and vacanies introduced during hot deformation promoted the diffusion of the carbon atoms, therefore the cementite spheroidization kinetics was accelerated dramatically as compared to isothermal annealing treatment. The dissolution, re-precipitation of cementite and supersaturated carbon inside the ferrite grains were confirmed. The supersaturated carbon atoms were not located at interstitial sites within the iron lattices homogeneously, but highly segregated in ferrite grain boundaries and dislocation cores.
Key wordsmedium carbon steel    the carbon atoms    diffusion coefficient    dislocation cores
收稿日期: 2006-10-30     
ZTFLH:  TG142.3  
[1]Shin D H,Park K T,Kim Y S.Scr Mater,2003;48:469
[2]Shin D H,Kim B C,Park K T,Kim Y S.Acta Mater, 2000;48:2247
[3]Song R,Ponge D,Raabe D,Kaspar R.Acta Mater,2005; 53:845
[4]Storojeva L,Ponge D,Kaspar R, Raabe D.Acta Mater, 2004;52:2209
[5]Ivanisenko Y,Lojkowski W,Valiev R Z,Fecht H J.Acta Mater,2003;51:5555
[6]Furuhara T,Mizoguchi T,Maki T.ISIJ Int,2005;45:392
[7]Yaag W Y,Qi J J,Sun Z Q,Yang P.Acta Metall Sin, 2004;40:135 (杨王玥,齐俊杰,孙祖庆,杨平.金属学报,2004;40:135)
[8]Chen G A,Yang W Y,Sun Z Q.Acta Metall Sin,2007; 43:27 (陈国安,杨王玥,孙祖庆.金属学报,2007;43:27)
[9]Gavriljuk V G.Mater Sci Eng,2003;A345:81
[10]Yu Y N.The Principle of the Metallorgy.Beijing:Metal- lurgical Industry Press,2000:169 (余永宁.金属学原理.北京:冶金工业出版社,2000:169)
[11]van Leeuwen Y,Sietsma J,van der Zwaag S.ISIJ Int, 2003;43:767
[12]Li S T.The Experimental Method of X-ray Diffraction. Beijing:Metallurgical Industry Press,1993:56 (李树棠.X射线衍射实验方法.北京:冶金工业出版社,1993:56)
[13]Rice J K,Wang J.Mater Sci Eng,1989;A107:23
[1] 王周头, 袁清, 张庆枭, 刘升, 徐光. 冷轧中碳梯度马氏体钢的组织与力学性能[J]. 金属学报, 2023, 59(6): 821-828.
[2] 武慧东, 宫本吾郎, 杨志刚, 张弛, 陈浩, 古原忠. Fe-1.5(3.0)%Si-0.4%C合金贝氏体不完全转变现象及伴随的渗碳体析出[J]. 金属学报, 2018, 54(3): 367-376.
[3] 刘远荣,陈伟民,汤颖,杜勇,张利军. 实用型数值回归法在三元铝合金互扩散系数计算中的应用*[J]. 金属学报, 2016, 52(8): 1009-1016.
[4] 黄祖江, 周敏, 杨阳, 陈泉志, 唐仕光, 李伟洲. 阳极氧化铝膜中间层阻挡元素扩散研究*[J]. 金属学报, 2016, 52(3): 341-348.
[5] 吴斯, 李秀程, 张娟, 尚成嘉. Nb对中碳钢相变和组织细化的影响*[J]. 金属学报, 2014, 50(4): 400-408.
[6] 张金玲,冯芝勇,胡兰青,王社斌,许并社. 不同La含量AZ91合金的时效硬化行为[J]. 金属学报, 2012, 48(5): 607-614.
[7] 王斌,刘振宇,周晓光,王国栋. 轧后冷却路径对中碳钢扩孔性能的影响[J]. 金属学报, 2012, 48(4): 435-440.
[8] 刘明治 张瑞杰 方伟 章书周 曲选辉. 相场法模拟两相多孔组织烧结[J]. 金属学报, 2012, 48(10): 1207-1214.
[9] 陈业新 常庆刚. 20g纯净钢中氢陷阱对氢扩散系数的作用[J]. 金属学报, 2011, 47(5): 548-552.
[10] 高运明 宋建新 张业勤 郭兴敏. 利用电化学方法测定高温银液中氧的扩散系数[J]. 金属学报, 2010, 46(3): 277-281.
[11] 李龙飞, 夏杨青, 孙祖庆, 杨王玥 . 中碳钢回火马氏体热变形过程中的铁素体动态再结晶[J]. 金属学报, 2010, 46(1): 19-26.
[12] 张寒 白秉哲. Mn-Si-Cr系中碳钢在过冷奥氏体状态下变形时的显微组织演变[J]. 金属学报, 2010, 46(1): 47-51.
[13] 张继旺 鲁连涛 张卫华. 微粒子喷丸中碳钢疲劳性能分析[J]. 金属学报, 2009, 45(11): 1378-1383.
[14] 蔡辉 王菲 王亚平 宋晓平 丁秉钧. Si粉表面溶胶-凝胶预处理制备Cu/Si复合材料[J]. 金属学报, 2009, 45(10): 1261-1266.
[15] 陈国安; 杨王玥 . 中碳钢过冷奥氏体形变过程的组织演变[J]. 金属学报, 2007, 42(1): 27-34 .