Please wait a minute...
金属学报  2006, Vol. 42 Issue (8): 870-874     
  论文 本期目录 | 过刊浏览 |
深过冷条件下Fe-Ni-P-B合金的纳米晶凝固组织与液相Spinodal分解
张长青;姚可夫
清华大学
The nanocrystalline structures of Fe-Ni-P-B alloy solidified at large undercooling and the liquid Spinonal decomposition of alloy melt
;
清华大学
引用本文:

张长青; 姚可夫 . 深过冷条件下Fe-Ni-P-B合金的纳米晶凝固组织与液相Spinodal分解[J]. 金属学报, 2006, 42(8): 870-874 .
, . The nanocrystalline structures of Fe-Ni-P-B alloy solidified at large undercooling and the liquid Spinonal decomposition of alloy melt[J]. Acta Metall Sin, 2006, 42(8): 870-874 .

全文: PDF(1559 KB)  
摘要: 采用玻璃融覆法(fluxing)提纯技术能显著提高Fe40Ni40P14B6合金的过冷度, 并可获得深过冷条件下的凝固组织. 研究结果表明, 不同过冷度下Fe40Ni40P14B6的凝固组织存在显著差异, 增加过冷度能大幅细化凝固组织. 在深过冷条件下, 能获得纳米晶凝固组织; 当过冷度为360 K时, 所制备的Fe40Ni40P14B6块体纳米晶合金的平均晶粒尺寸约为40 nm; 当过冷度足够大时, 获得的凝固组织具有液相Spinodal分解导致的网状组织特征. 热力学分析结果表明, Spinodal分解所形成的网状组织的特征尺寸与熔体过冷度有关, 过冷度越大, 尺寸越小.
关键词 Fe-Ni-P-B合金玻璃融覆法Spinodal分解    
Abstract:It has been found that the undercooling of Fe40Ni40P14B6 alloy melt can be enhanced greatly by using fluxing purification technique. The results show that the solidification structures of the alloy at different undercooling are quite difference and the microstructure can be refined significantly by increasing the undercooling. When the undercooling is large enough, nanosize solidification structure can be obtained. In present work, at the undercooling of 360K, the as-prepared bulk nanocrystalline alloy possesses the average grain size of 40nm. It has been found that the alloy melt will experience Spinodal decomposition resulting in appearance of the network characteristics in solidification structure if the undercooling is large enough. The thermodynamics analysis results indicate that the characteristic sizes of the network structure resulted by Spinodal decomposition are close related to the undercooling of the alloy melt, the larger the undercooling, the smaller the grain size.
Key wordsfluxing technique    spinodal decomposition    undercooling    nano-structure
收稿日期: 2005-11-22     
ZTFLH:  TG111.2  
[1]Long Y,Zhang Z Y,Li S W.New Functional Magnetic Material and Applications.Beijing:China Machine Press,1997:130 (龙毅,张正义,李守卫.新功能磁性材料及其应用.北京:机械工业出版社,1997:130)
[2]Kui H W,Greer A L,Turnbull D.Appl Phys Lett,1984;45:615
[3]Perepezko J H.Mater Sci Eng,1994;A179:52
[4]Herlach D M,Gao J,Holland-Moritz D,Volkmann T.Mater Sci Eng,2004;A375:9
[5]Norman A F,Greer A L.Mater Sci Forum,1995;179-180:707
[6]Hu H Q.Principles of Metal Solidification.2nd ed,Beijing:China Machine Press,2000:80 (胡汉起.金属凝固原理.第2版,北京:机械工业出版社,2000:80)
[7]Shen T D,Schwartz R B.Acta Mater,2001;49:837
[8]Cahn J W.TMS AIME,1968;242:166
[9]Guo W H,Chua C F,Leung C C,Kui H W.J Mater Res,2000;15:1605
[10]Luborsky F E.Amorphous Metallic and Alloys.London:Butterworth & Co (Publishers) Ltd.,1983:153
[11]Perepezko J H.Mater Sci Eng,1997;A226-228:374
[12]Laxmanan V.Acta Metall,1985;33:1475
[13]Xu Z,Zhao L C.Principles of Metallic Solid Transformation.Beijing:Science Press,2004:169 (徐洲,赵连城.金属固态相变原理.北京:科学出版社,2004:169)
[14]Lee K L,Kui H W.J Mater Res,1999;14:3653
[15]Hong S Y,Guo W H,Kui H W.J Mater Res,1999;14:3668
[16]Guo W H,Kui H W.Acta Mater,2000;48:2117
[17]Yuen C W,Lee K L,Kui H W.J Mater Res,1997;12:314
[18]Yuen C W,Kui H W.J Mater Res,1998;13:3034w
[1] 徐祖耀. Spinodal分解始发形成调幅组织的强化机制[J]. 金属学报, 2011, 47(1): 1-6.
[2] 高英俊 罗志荣 张少义 黄创高. 相场方法研究Al-Ag合金γ相周围溶质析出过程[J]. 金属学报, 2010, 46(12): 1473-1480.