|
|
|
| 固相摩擦增材制造技术研究进展及其应用现状 |
刘海滨1, 张迎星1, 谢瑞山1,2, 陈树君1( ) |
1 北京工业大学 机械与能源工程学院 北京 100124 2 北京工业大学 重庆研究院 重庆 401121 |
|
| Recent Research Progress in Solid-State Friction-Based Additive Manufacturing Technology and Its Current Applications |
LIU Haibin1, ZHANG Yingxing1, XIE Ruishan1,2, CHEN Shujun1( ) |
1 College of Mechanical and Energy Engineering, Beijing University of Technology, Beijing 100124, China 2 Chongqing Research Institute of Beijing University of Technology, Chongqing 401121, China |
引用本文:
刘海滨, 张迎星, 谢瑞山, 陈树君. 固相摩擦增材制造技术研究进展及其应用现状[J]. 金属学报, 2026, 62(1): 100-116.
Haibin LIU,
Yingxing ZHANG,
Ruishan XIE,
Shujun CHEN.
Recent Research Progress in Solid-State Friction-Based Additive Manufacturing Technology and Its Current Applications[J]. Acta Metall Sin, 2026, 62(1): 100-116.
| [1] |
Liu H B, Yang C Y, Xie R S, et al. Enhancing ultrahigh-strength aluminum alloys via TiC nanoparticle-pinning effect in friction rolling additive manufacturing [J]. J. Manuf. Process., 2025, 141: 263
|
| [2] |
Yang X W, Li R D, Yuan T C, et al. A comprehensive overview of additive manufacturing aluminum alloys: Classifications, structures, properties and defects elimination [J]. Mater. Sci. Eng., 2025, A919: 147464
|
| [3] |
Li H Z, Wang C M, Zhang H, et al. Research progress of friction stir additive manufacturing technology [J]. Acta Metall Sin, 2023, 59: 106
|
| [3] |
李会朝, 王彩妹, 张 华 等. 搅拌摩擦增材制造技术研究进展 [J]. 金属学报, 2023, 59: 106
|
| [4] |
Liu Z Z, Ding M L, Xie J X. Advancements in digital manufacturing for metal 3D printing [J]. Acta Metall Sin, 2024, 60: 569
|
| [4] |
刘壮壮, 丁明路, 谢建新. 金属3D打印数字化制造研究进展 [J]. 金属学报, 2024, 60: 569
|
| [5] |
Hassan A, Pedapati S R, Awang M, et al. A comprehensive review of friction stir additive manufacturing (FSAM) of non-ferrous alloys [J]. Materials, 2023, 16: 2723
|
| [6] |
Shen Z K, Li D X, Sun Z G, et al. Fundamentals and prospects of additive friction stir deposition: Opportunities and challenges [J]. J. Mech. Eng., 2025, 61(2): 56
|
| [6] |
申志康, 李冬晓, 孙中刚 等. 搅拌摩擦沉积增材制造机理及展望: 机遇与挑战 [J]. 机械工程学报, 2025, 61(2): 56
|
| [7] |
Mishra R S, Haridas R S, Agrawal P. Friction stir-based additive manufacturing [J]. Sci. Technol. Weld. Join., 2022, 27: 141
|
| [8] |
Rathee S, Srivastava M, Pandey P M, et al. Metal additive manufacturing using friction stir engineering: A review on microstructural evolution, tooling and design strategies [J]. CIRP J. Manuf. Sci. Technol., 2021, 35: 560
|
| [9] |
Khodabakhshi F, Gerlich A P. Potentials and strategies of solid-state additive friction-stir manufacturing technology: A critical review [J]. J. Manuf. Process., 2018, 36: 77
|
| [10] |
Wen Q, Liu J L, Meng X C, et al. Development in key technique and equipment of friction stir additive manufacturing [J]. Trans. China Weld. Inst., 2022, 43(6): 1
|
| [10] |
温 琦, 刘景麟, 孟祥晨 等. 搅拌摩擦增材制造关键技术与装备发展 [J]. 焊接学报, 2022, 43(6): 1
|
| [11] |
Korgancı M, Bozkurt Y. Recent developments in additive friction stir deposition (AFSD) [J]. J. Mater. Res. Technol., 2024, 30: 4572
|
| [12] |
Bozkurt Y, Avşar A, Korgancı M, et al. A comprehensive review on friction stir additive manufacturing of various structural alloys for aerospace applications [J]. Prog. Addit. Manuf., 2025, 10: 7365
|
| [13] |
Mishra R S, Ma Z Y. Friction stir welding and processing [J]. Mater. Sci. Eng., 2005, R50: 1
|
| [14] |
Xue F T, Liu H B. The general design of machining control system and a process simulation for advice friction additive manufacturing [J]. World Nonferrous Met., 2018, 43(6): 10
|
| [14] |
薛凤桐, 刘海滨. 先进摩擦增材制造控制系统总体设计与过程仿真 [J]. 世界有色金属, 2018, 43(6): 10
|
| [15] |
Xue F T, Liu H B. The overview of friction stir additive manufacturing [J]. Mod. Manuf. Eng., 2019, (4): 33
|
| [15] |
薛凤桐, 刘海滨. 摩擦搅拌增材制造发展概述 [J]. 现代制造工程, 2019, (4): 33
|
| [16] |
Xue P, Zhang X X, Wu L H, et al. Research progress on friction stir welding and processing [J]. Acta Metall. Sin., 2016, 52: 1222
|
| [16] |
薛 鹏, 张星星, 吴利辉 等. 搅拌摩擦焊接与加工研究进展 [J]. 金属学报, 2016, 52: 1222
|
| [17] |
Wang Y D, Liu M, Yu B H, et al. Enhanced combination of mechanical properties and electrical conductivity of a hard state Cu-Cr-Zr alloy via one-step friction stir processing [J]. J. Mater. Process. Technol., 2021, 288: 116880
|
| [18] |
Xue P, Wang B B, Chen F F, et al. Microstructure and mechanical properties of friction stir processed Cu with an ideal ultrafine-grained structure [J]. Mater. Charact., 2016, 121: 187
|
| [19] |
Liu F C, Dong P S, Khan A S, et al. 3D printing of fine-grained aluminum alloys through extrusion-based additive manufacturing: Microstructure and property characterization [J]. J. Mater. Sci. Technol., 2023, 139: 126
|
| [20] |
Liu F C, Feng A H, Pei X, et al. Friction stir based welding, processing, extrusion and additive manufacturing [J]. Prog. Mater. Sci., 2024, 146: 101330
|
| [21] |
Yu H Z, Mishra R S. Additive friction stir deposition: A deformation processing route to metal additive manufacturing [J]. Mater. Res. Lett., 2021, 9: 71
|
| [22] |
Geng H B, Li J L, Xiong J T, et al. Optimization of wire feed for GTAW based additive manufacturing [J]. J. Mater. Process. Technol., 2017, 243: 40
|
| [23] |
Yang F, Pei S C, Luo X R, et al. Microstructure evolution and mechanical properties of 6061 aluminum alloy fabricated by friction stir additive manufacturing [J]. Acta Metall. Sin., 2025, 61: 1129
|
| [23] |
杨 帆, 裴世超, 罗新蕊 等. 6061铝合金搅拌摩擦增材制造显微组织演变及力学性能 [J]. 金属学报, 2025, 61: 1129
|
| [24] |
Jha K K, Kesharwani R, Imam M. Microstructure, texture, and mechanical properties correlation of AA5083/AA6061/SiC composite fabricated by FSAM process [J]. Mater. Chem. Phys., 2023, 296: 127210
|
| [25] |
Jha K K, Kesharwani R, Imam M. Microstructural and micro-hardness study on the fabricated Al 5083-O/6061-T6/7075-T6 gradient composite component via a novel route of friction stir additive manufacturing [J]. Mater. Today Proc., 2022, 56: 819
|
| [26] |
Srivastava A K, Kumar N, Dixit A R. Friction stir additive manufacturing—An innovative tool to enhance mechanical and microstructural properties [J]. Mater. Sci. Eng., 2021, B263: 114832
|
| [27] |
Palanivel S, Nelaturu P, Glass B, et al. Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy [J]. Mater. Des., 2015, 65: 934
|
| [28] |
Shen Z, Chen S, Cui L, et al. Local microstructure evolution and mechanical performance of friction stir additive manufactured 2195 Al-Li alloy [J]. Mater. Charact., 2022, 186: 111818
|
| [29] |
Sun J R, Zhu H, Zhao H X, et al. Influence of process parameters of friction stir additive manufacturing of aluminum alloy on forming effect [J]. Hot Work. Technol., 2018, 47(15): 37
|
| [29] |
孙金睿, 朱 海, 赵华夏 等. 铝合金搅拌摩擦增材制造工艺参数对成型效果的影响 [J]. 热加工工艺, 2018, 47(15): 37
|
| [30] |
Zhao Z J, Yang X Q, Li S L, et al. Influence of tool shape and process on formation and defects of friction stir additive manufactured build [J]. J. Mater. Eng., 2019, 47(9): 84
|
| [30] |
赵梓钧, 杨新岐, 李胜利 等. 工具形状及工艺过程对搅拌摩擦增材成形及缺陷的影响 [J]. 材料工程, 2019, 47(9): 84
|
| [31] |
Esther I, Dinaharan I, Murugan N. Microstructure and wear characterization of AA2124/4wt.%B4C Nano-composite coating on Ti-6Al-4V alloy using friction surfacing [J]. Trans. Nonferrous Met. Soc. China, 2019, 29: 1263
|
| [32] |
Zeng H, Liu F C, Zhu S Z, et al. Hybrid additive manufacturing of aluminum matrix composites with improved mechanical properties compared to extruded counterparts [J]. Composites, 2024, 280B: 111497
|
| [33] |
Chandrasekaran M, Batchelor A W, Jana S. Friction surfacing of metal coatings on steel and aluminum substrate [J]. J. Mater. Process. Technol., 1997, 72: 446
|
| [34] |
Rafi H K, Ram G D J, Phanikumar G, et al. Friction surfaced tool steel (H13) coatings on low carbon steel: A study on the effects of process parameters on coating characteristics and integrity [J]. Surf. Coat. Technol., 2010, 205: 232
|
| [35] |
Guo D, Kwok C T, Chan S L I. Spindle speed in friction surfacing of 316L stainless steel—How it affects the microstructure, hardness and pitting corrosion resistance [J]. Surf. Coat. Technol., 2019, 361: 324
|
| [36] |
Nahr M A, Mirsalehi S E, Papi A. Additive manufacturing of AA2024/Al2O3 nanocomposites via friction surfacing: Investigating metallurgical, mechanical, and tribological properties [J]. J. Mater. Res. Technol., 2025, 36: 8609
|
| [37] |
Gandra J, Vigarinho P, Pereira D, et al. Wear characterization of functionally graded Al-SiC composite coatings produced by friction surfacing [J]. Mater. Des., 2013, 52: 373
|
| [38] |
Gandra J, Miranda R M, Vilaça P. Performance analysis of friction surfacing [J]. J. Mater. Process. Technol., 2012, 212: 1676
|
| [39] |
Phillips B J, Avery D Z, Liu T, et al. Microstructure-deformation relationship of additive friction stir-deposition Al-Mg-Si [J]. Materialia, 2019, 7: 100387
|
| [40] |
Agrawal P, Haridas R S, Yadav S, et al. Additive friction stir deposition of SS316: Effect of process parameters on microstructure evolution [J]. Mater. Charact., 2023, 195: 112470
|
| [41] |
Beck S C, Williamson C J, Kinser R P, et al. Examination of microstructure and mechanical properties of direct additive recycling for Al-Mg-Mn alloy machine chip waste [J]. Mater. Des., 2023, 228: 111733
|
| [42] |
Rivera O G, Allison P G, Jordon J B, et al. Microstructures and mechanical behavior of Inconel 625 fabricated by solid-state additive manufacturing [J]. Mater. Sci. Eng., 2017, A694: 1
|
| [43] |
Griffiths R J, Perry M E J, Sietins J M, et al. A perspective on solid-state additive manufacturing of aluminum matrix composites using MELD [J]. J. Mater. Eng. Perform., 2019, 28: 648
|
| [44] |
Rivera O G, Allison P G, Brewer L N, et al. Influence of texture and grain refinement on the mechanical behavior of AA2219 fabricated by high shear solid state material deposition [J]. Mater. Sci. Eng., 2018, A724: 547
|
| [45] |
Agrawal P, Haridas R S, Yadav S, et al. Processing-structure-property correlation in additive friction stir deposited Ti-6Al-4V alloy from recycled metal chips [J]. Addit. Manuf., 2021, 47: 102259
|
| [46] |
Li Y D, Yang B B, Macías J G S, et al. Processing and microstructure of bioresorbable Zn/Mg multi-materials manufactured by additive friction stir deposition [J]. J. Alloys Compd., 2025, 1034: 181342
|
| [47] |
Chen H Z, Zou N, Xie Y M, et al. Wire-based friction stir additive manufacturing of Al-Cu alloy with forging mechanical properties [J]. J. Manuf. Process., 2025, 133: 354
|
| [48] |
Bor T, de Leede M, Deunk F, et al. Friction screw extrusion additive manufacturing of an Al-Mg-Si alloy [J]. Addit. Manuf., 2023, 72: 103621
|
| [49] |
Chen H Z, Meng X C, Chen J L, et al. Wire-based friction stir additive manufacturing [J]. Addit. Manuf., 2023, 70: 103557
|
| [50] |
Chang H C, Zhang G F, Wang X W, et al. Research progress of additive manufacturing methods by friction stir route [J]. Welded Pipe Tube, 2024, 47(2): 17
|
| [50] |
畅海丞, 张贵锋, 王鑫炜 等. 搅拌摩擦增材制造方法研究进展 [J]. 焊管, 2024, 47(2): 17
|
| [51] |
Zhang Z Y, Wan L, Wen Q, et al. Wire-based friction stir additive manufacturing of TiC reinforced Al-Cu-Mg composite: Particle refinement and dispersion [J]. Composites, 2025, 196: 109009
|
| [52] |
Sun X W, Xie Y M, Meng X C, et al. Wire-based friction stir additive manufacturing of AZ31B magnesium alloy: Precipitate behavior and mechanical properties [J]. J. Magnes. Alloy., 2025, doi: 10.1016/j.jma.2025.04.025
|
| [53] |
Lyu W C, Shen Y Z, Tang Y Z, et al. Particle-based friction stir additive manufacturing of an Al-Mg-Mn alloy [J]. Addit. Manuf., 2025, 103: 104768
|
| [54] |
Xie R S, Liang T S, Shi Y C, et al. Revealing the bonding mechanisms between deposit and substrate of the friction rolling additive manufactured hybrid aluminum alloys [J]. Addit. Manuf., 2022, 56: 102942
|
| [55] |
Liu H B, Sun Y Y, Xie R S, et al. Characterization of microstructure and local mechanical properties of friction rolling additive manufactured Al-Li alloy under repeated thermal-mechanical cycles [J]. Mater. Charact., 2023, 204: 113169
|
| [56] |
Xie R S, Shi Y C, Hou R, et al. Efficient depositing aluminum alloy using thick strips through severe deformation-based friction rolling additive manufacturing: Processing, microstructure, and mechanical properties [J]. J. Mater. Res. Technol., 2023, 24: 3788
|
| [57] |
Liu H B, Wu C H, Xie R S, et al. Interface optimization design and bonding mechanism of friction rolling additive manufactured aluminum/steel dissimilar metal [J]. J. Manuf. Process., 2024, 132: 1041
|
| [58] |
Liu H B, Xu T L, Li J H, et al. Solid-state friction rolling repair technology for various forms of defects through multi-layer multi-pass deposition [J]. J. Manuf. Process., 2024, 127: 62
|
| [59] |
Xie R S, Shi Y C, Liu H B, et al. A novel friction and rolling based solid-state additive manufacturing method: Microstructure and mechanical properties evaluation [J]. Mater. Today Commun., 2021, 29: 103005
|
| [60] |
Liu H B, Xu Y Y, Chen Y, et al. Effects of toolhead size on the heat generation and material flow behaviors in solid state friction rolling additive manufacturing [J]. J. Mater. Res. Technol., 2024, 28: 1483
|
| [61] |
Liu H B, Liu Y Y, Liang T S, et al. Effect of press depth on defect formation in friction-rolling additive manufacturing [J]. J. Manuf. Process., 2024, 119: 305
|
| [62] |
Sun Y Y, Liu H B, Xie R S, et al. Heat-balance control of friction rolling additive manufacturing based on combination of plasma preheating and instant water cooling [J]. J. Mater. Sci. Technol., 2025, 205: 168
|
| [63] |
Liu H B, Hou R, Wu C H, et al. Multi-layer multi-pass friction rolling additive manufacturing of Al alloy: Toward complex large-scale high-performance components [J]. Int. J. Miner. Metall. Mater., 2025, 32: 425
|
| [64] |
Liu H B, Xu Y Y, Hou R, et al. Effect of overlap percentage on morphology, microstructure, and mechanical properties during multilayer multi-pass friction rolling additive manufacturing [J]. Mater. Charact., 2025, 223: 114980
|
| [65] |
Xie R S, Chen P P, Shi Y C, et al. Effect of feeding material shape on microstructures and mechanical properties in friction rolling additive manufacturing [J]. Mater. Des., 2024, 241: 112952
|
| [66] |
Xu Y Y, Liu H B, Kong L Z, et al. In-situ investigation into transient temperature and three-dimensional force evolution behavior during multilayer friction rolling additive manufacturing [J]. J. Manuf. Process., 2025, 149: 144
|
| [67] |
Xu Y Y, Liu H B, Xie R S, et al. In-situ investigation of interlayer interface bonding defect-formation mechanisms during FRAM [J]. Int. J. Mech. Sci., 2025, 299: 110406
|
| [68] |
Liu Y Y, Liu H B, Xie R S, et al. Mechanisms of FRAM toolhead enhancing material flow and grain refinement [J]. Int. J. Mech. Sci., 2025, 290: 110097
|
| [69] |
Liu H B, Yang C Y, Xie R S, et al. High-pressure air cooling-assisted friction rolling additive manufacturing: An effective approach for optimizing microstructure and mechanical properties of Al-Zn-Mg-Cu alloy [J]. Mater. Sci. Eng., 2025, A942: 148701
|
| [70] |
Xie R S, Liang T S, Chen S J, et al. In-depth understanding of rotating toolhead-induced heat generation and material flow behavior in friction-rolling additive manufacturing [J]. Addit. Manuf., 2023, 67: 103496
|
| [71] |
Liu F C, Zhang Y N, Dong P S. Large area friction stir additive manufacturing of intermetallic-free aluminum-steel bimetallic components through interfacial amorphization [J]. J. Manuf. Process., 2022, 73: 725
|
| [72] |
Zhang G F, Chang H C, Wang X W, et al. Additive manufacturing by friction stir brazing and its derived technology [J]. Welded Pipe Tube, 2025, 48(8): 57
|
| [72] |
张贵锋, 畅海丞, 王鑫炜 等. 搅拌摩擦钎焊增材制造及其衍生技术 [J]. 焊管, 2025, 48(8): 57
|
| [73] |
He C S, Li Y, Zhang Z Q, et al. Investigation on microstructural evolution and property variation along building direction in friction stir additive manufactured Al-Zn-Mg alloy [J]. Mater. Sci. Eng., 2020, A777: 139035
|
| [74] |
Liu G Z, Wang Z H, Yan C Z, et al. Advances in additive manufacturing of SiC/Al composites: A review [J]. Rev. Mater. Res., 2025, 1: 100041
|
| [75] |
Özcan M E. The influence of parameters on the evolution of the friction surfacing method—A review [J]. J. Mech. Sci. Technol., 2022, 36: 723
|
| [76] |
Seidi E, Miller S F, Carlson B E. Friction surfacing deposition by consumable tools [J]. J. Manuf. Sci. Eng., 2021, 143: 120801
|
| [77] |
Zhang M T, Jiang T, Sun Z G, et al. Screw-fed powder-based additive friction stir deposition: A study on pure aluminum [J]. J. Mater. Process. Technol., 2025, 337: 118730
|
| [78] |
Wu B L, Peng Y C, Tang H Q, et al. Improving grain structure and dispersoid distribution of nanodiamond reinforced AA6061 matrix composite coatings via high-speed additive friction stir deposition [J]. J. Mater. Process. Technol., 2023, 317: 117983
|
| [79] |
Yu H Z, Jones M E, Brady G W, et al. Non-beam-based metal additive manufacturing enabled by additive friction stir deposition [J]. Scr. Mater., 2018, 153: 122
|
| [80] |
Elfishawy E, Ahmed M M Z, El-Sayed Seleman M M. Additive manufacturing of aluminum using friction stir deposition [A]. Proceedings of the TMS 2020 149th Annual Meeting Exhibition Supplemental Proceedings [C]. Cham: Springer, 2020: 227
|
| [81] |
Prakash T, Bauri R. Investigation on microstructural and texture evolution in additive friction stir deposited Inconel 718 alloy [J]. Mater. Charact., 2025, 225: 115088
|
| [82] |
Rezaeinejad S S, Strik D H, Visser R M, et al. Solid-state additive manufacturing of AA6060 employing friction screw extrusion additive manufacturing [J]. JOM, 2023, 75: 4199
|
| [83] |
Dong H R, Li X Q, Xu K, et al. A review on solid-state-based additive friction stir deposition [J]. Aerospace, 2022, 9: 565
|
| [84] |
Xie R S, Chen X G, Shi Y C, et al. Printing high-strength high-elongation aluminum alloy using commercial ER2319 welding wires through deformation-based additive manufacturing [J]. Mater. Sci. Eng., 2023, A868: 144773
|
| [85] |
Griffiths R J, Garcia D, Song J, et al. Solid-state additive manufacturing of aluminum and copper using additive friction stir deposition: Process-microstructure linkages [J]. Materialia, 2021, 15: 100967
|
| [86] |
Liu P, Liu F C, Wang Y D, et al. Additive manufacturing of commercial Al-Zn-Mg-Cu aluminum alloys with mechanical properties comparable to extruded counterparts [J]. Mater. Sci. Eng., 2024, A899: 146441
|
| [87] |
Li Y, He C S, Wei J X, et al. Correlation of local microstructures and mechanical properties of Al-Zn-Mg-Cu alloy build fabricated via underwater friction stir additive manufacturing [J]. Mater. Sci. Eng., 2021, A805: 140590
|
| [88] |
Hao X M, Liu X M, Wu D T, et al. Underwater friction surfacing of AA7075 aluminum alloy [J]. Mater. Today Commun., 2025, 46: 112669
|
| [89] |
Li S Q, Peng Y, Liu J Z, et al. Microstructure evolution and mechanical properties of high-strength aluminum alloy prepared by additive friction stir deposition [J]. J. Mater. Res. Technol., 2025, 36: 1774
|
| [90] |
Palanivel S, Sidhar H, Mishra R S. Friction stir additive manufacturing: Route to high structural performance [J]. JOM, 2015, 67: 616
|
| [91] |
Liu M, Wang B B, An X H, et al. Friction stir additive manufacturing enabling scale-up of ultrafine-grained pure copper with superior mechanical properties [J]. Mater. Sci. Eng., 2022, A857: 144088
|
| [92] |
Sun Y Y, Liu H B, Wu C H, et al. Effect of the aging process on the precipitated phase of 2195 Al-Li alloy deposited by preheating and water-cooling assisted friction rolling additive manufacturing [J]. J. Alloys Compd., 2025, 1022: 179826
|
| [93] |
Liu H B, Li J H, Xie R S, et al. Dual-shoulder FRAM for thin-walled aerospace component repair: Material flow control, microstructural evolution, and mechanical performance [J]. Thin-Walled Struct., 2025, 214: 113392
|
| [94] |
Jha K K, Imam M. Microstructure evolution and local mechanical properties of friction stir additively manufactured (FSAM) AA5083/AA6061/AA7075 gradient composite [J]. Mater. Sci. Eng., 2024, A903: 146668
|
| [95] |
Stubblefield G G, Williams M B, Munther M, et al. Ballistic evaluation of aluminum alloy (AA) 7075 plate repaired by additive friction stir deposition using AA7075 feedstock [J]. J. Dyn. Behav. Mater., 2023, 9: 79
|
| [96] |
Joshi S S, Patil S M, Mazumder S, et al. Additive friction stir deposition of AZ31B magnesium alloy [J]. J. Magnes. Alloy., 2022, 10: 2404
|
| [97] |
Palanivel S, Mishra R S. Building without melting: A short review of friction-based additive manufacturing techniques [J]. Int. J. Addit. Subtract. Mater. Manuf., 2017, 1: 82
|
| [98] |
Gopan V, Dev Wins K L, Surendran A. Innovative potential of additive friction stir deposition among current laser based metal additive manufacturing processes: A review [J]. CIRP J. Manuf. Sci. Technol., 2021, 32: 228
|
| [99] |
Liu P, Liu F C, Wang Y D, et al. Friction stir based additive manufacturing of high strength aluminum alloys: A review [J]. Aerosp. Manuf. Technol., 2023, (5): 1
|
| [99] |
刘 鹏, 刘峰超, 王砚东 等. 高强铝合金搅拌摩擦类增材制造研究进展 [J]. 航天制造技术, 2023, (5): 1
|
| [100] |
Chen G, Wu K, Sun Y, et al. Research progress in additive friction stir deposition [J]. J. Mater. Eng., 2023, 51(1): 52
|
| [100] |
陈 刚, 武 凯, 孙 宇 等. 搅拌摩擦沉积增材技术研究进展 [J]. 材料工程, 2023, 51(1): 52
|
| [101] |
Schmitz T, Charles E, Compton B. Analytical temperature model for spindle speed selection in additive friction stir deposition [J]. Manuf. Lett., 2024, 41: 720
|
| [102] |
Zhao Z J, Yang X Q, Li S L, et al. Interfacial bonding features of friction stir additive manufactured build for 2195-T8 aluminum-lithium alloy [J]. J. Manuf. Process., 2019, 38: 396
|
| [103] |
Liu H B, Xu T L, Xie R S. Research status and development trend of light alloy defect repair in aerospace field [J]. Aerosp. Manuf. Technol., 2023, (2): 1
|
| [103] |
刘海滨, 徐添乐, 谢瑞山. 航空航天领域轻合金缺陷修复研究现状及发展趋势 [J]. 航天制造技术, 2023, (2): 1
|
| [104] |
Chen S J, Ni Q M, Liu H B, et al. Numerical simulation of hybrid additive and subtractive manufacturing and evolution behavior of stress and deformation [J]. Trans. China Weld. Inst., 2025, 46(5): 1
|
| [104] |
陈树君, 倪庆冕, 刘海滨 等. 增减材复合制造模拟仿真及应力与变形演变规律 [J]. 焊接学报, 2025, 46(5): 1
|
| [105] |
Wang N, Guo W C, Yang T H, et al. Research progress in additive friction stir deposition technology and equipment [J]. Aerosp. Mater. Process., 2025, 55(2): 1
|
| [105] |
王 诺, 郭维诚, 杨天豪 等. 搅拌摩擦沉积增材制造技术与装备研究进展 [J]. 宇航材料工艺, 2025, 55(2): 1
|
| [106] |
Zhang M T, Jiang T, Xu Y X, et al. Development and application of additive friction stir deposition technology [J]. Ordn. Mater. Sci. Eng., 2025, doi: 10.14024/j.cnki.1004-244x.20250722.002
|
| [106] |
张明涛, 江 涛, 徐雅欣 等. 搅拌摩擦增材制造技术的发展与应用 [J]. 兵器材料科学与工程, 2025, doi: 10.14024/j.cnki.1004-244x.20250722.002
|
| [107] |
Zhou Z X, Shen Y Z, Lyu W, et al. Interface stair-like design and repair performance of Al-Zn-Mg-Cu aluminum alloy based on additive friction stir deposition [J]. J. Mater. Process. Technol., 2025, 338: 118758
|
| [108] |
Qiao Q, Zhou M, Gong X, et al. In-situ monitoring of additive friction stir deposition of AA6061: Effect of layer thickness on the microstructure and mechanical properties [J]. Addit. Manuf., 2024, 84: 104141
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|