|
|
|
| 水下焊接关键技术及其应用的研究进展 |
王振民1, 庄建鹏1, 何智宇1, 王玉海1, 迟鹏1, 张斌1, 张芩2, 廖海鹏3( ) |
1 华南理工大学 机械与汽车工程学院 广州 510641 2 华南理工大学 计算机科学与工程学院 广州 510006 3 华南理工大学 海洋科学与工程学院 广州 511442 |
|
| Research Advances in Underwater Welding Technologies and Applications: A Review |
WANG Zhenmin1, ZHUANG Jianpeng1, HE Zhiyu1, WANG Yuhai1, CHI Peng1, ZHANG Bin1, ZHANG Qin2, LIAO Haipeng3( ) |
1 School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China 2 School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China 3 School of Marine Science and Engineering, South China University of Technology, Guangzhou 511442, China |
引用本文:
王振民, 庄建鹏, 何智宇, 王玉海, 迟鹏, 张斌, 张芩, 廖海鹏. 水下焊接关键技术及其应用的研究进展[J]. 金属学报, 2026, 62(1): 81-99.
Zhenmin WANG,
Jianpeng ZHUANG,
Zhiyu HE,
Yuhai WANG,
Peng CHI,
Bin ZHANG,
Qin ZHANG,
Haipeng LIAO.
Research Advances in Underwater Welding Technologies and Applications: A Review[J]. Acta Metall Sin, 2026, 62(1): 81-99.
| [1] |
Zhou L, Liu Y B, Guo N, et al. Development status of underwater welding technology [J]. Electr. Weld. Mach., 2012, 42(11): 6
|
| [1] |
周 利, 刘一搏, 郭 宁 等. 水下焊接技术的研究发展现状 [J]. 电焊机, 2012, 42(11): 6
|
| [2] |
Łabanowski J. Development of under-water welding techniques [J]. Weld. Int., 2011, 25: 933
|
| [3] |
Wu L, Song H W. The current situation and development trend of underwater welding [J]. Pipeline Technol. Equip., 2012, (2): 37
|
| [3] |
吴 磊, 宋红伟. 水下焊接技术的现状及发展趋势 [J]. 管道技术与设备, 2012, (2): 37
|
| [4] |
Wang Z H, Zhang D D. Research status of hyperbaric welding test chamber [J]. Weld. Pipe Tube, 2012, 35(5): 50
|
| [4] |
王中辉, 张东东. 高压焊接试验舱研究现状 [J]. 焊管, 2012, 35(5): 50
|
| [5] |
Han F Q, Li Z Z, Sun L M, et al. Research on underwater wet manual SHS welding [J]. Trans. China Weld. Inst., 2019, 40(7): 149
|
| [5] |
韩凤起, 李志尊, 孙立明 等. 水下湿法手工自蔓延焊接技术 [J]. 焊接学报, 2019, 40(7): 149
|
| [6] |
Hou R L. Research on the design and key technology of local dry welding device [D]. Daqing: Northeast Petroleum University, 2022
|
| [6] |
侯瑞麟. 局部干法焊接装置设计及其关键技术研究 [D]. 大庆: 东北石油大学, 2022
|
| [7] |
Wang Z H, Qi B J, Jiang L P, et al. Development state of hyperbaric underwater welding technology [J]. Weld. Joining, 2008, (10): 5
|
| [7] |
王中辉, 齐柏金, 蒋力培 等. 高压干法水下焊接技术发展现状 [J]. 焊接, 2008, (10): 5
|
| [8] |
Li K. Research on arc behavior and droplet transfer of dry hyperbaric GMAW [D]. Harbin: Harbin Institute of Technology, 2014
|
| [8] |
李 凯. 高压干法GMAW电弧行为及熔滴过渡研究 [D]. 哈尔滨: 哈尔滨工业大学, 2014
|
| [9] |
Zhang Y M. The research on welding process of pulsed GMAW in dry high pressure environment [D]. Beijing: Beijing Institute of Petrochemical Technology, 2016
|
| [9] |
张永明. 干式高气压环境下脉冲GMAW焊接工艺研究 [D]. 北京: 北京石油化工学院, 2016
|
| [10] |
Tomków J, Łabanowski J, Fydrych D, et al. Cold cracking of S460N steel welded in water environment [J]. Pol. Marit. Res., 2018, 25: 131
|
| [11] |
Rowe M, Liu S. Recent developments in underwater wet welding [J]. Sci. Technol. Weld. Join., 2001, 6: 387
|
| [12] |
Zhao B, Wu C S, Jia C B, et al. Numerical analysis of the weld bead profiles in underwater wet flux-cored arc welding [J]. Acta Metall. Sin., 2013, 49: 797
|
| [12] |
赵 博, 武传松, 贾传宝 等. 水下湿法fcaw焊缝成形的数值分析 [J]. 金属学报, 2013, 49: 797
|
| [13] |
Świerczyńska A, Fydrych D, Rogalski G. Diffusible hydrogen management in underwater wet self-shielded flux cored arc welding [J]. Int. J. Hydrogen Energy, 2017, 42: 24532
|
| [14] |
Chen H, Guo N, Huang L, et al. Effects of arc bubble behaviors and characteristics on droplet transfer in underwater wet welding using in-situ imaging method [J]. Mater. Des., 2019, 170: 107696
|
| [15] |
Zhang X D, Ashida E, Shono S, et al. Effect of shielding conditions of local dry cavity on weld quality in underwater Nd:YAG laser welding [J]. J. Mater. Process. Technol., 2006, 174: 34
|
| [16] |
Katayama S, Yohei A, Mizutani M, et al. Development of deep penetration welding technology with high brightness laser under vacuum [J]. Phys. Procedia, 2011, 12: 75
|
| [17] |
Wang Z M, Hu J L, Jia J J, et al. Effect of frequency on welding stability, microstructure, and mechanical performance of SUS304 welded by local dry underwater fast-frequency pulsed MIG [J]. J. Manuf. Process., 2025, 133: 1051
|
| [18] |
Suga Y, Hasui A. On arc welding in high pressure argon atmosphere [J]. Quart. J. Jpn. Weld. Soc., 1986, 4: 691
|
| [19] |
Chen X Q, Du J B, Du Y P, et al. Research status of the influence of water environment on underwater welding process [J]. Weld. Technol., 2021, 50(5): 39
|
| [19] |
陈晓强, 都景彬, 杜永鹏 等. 水环境对水下焊接过程影响研究现状 [J]. 焊接技术, 2021, 50(5): 39
|
| [20] |
Wang G R, Yang Q M. Spectral diagnostics of temperature of underwater welding arc [J]. J. South China Univ. Technol. (Nat. Sci.), 1997, 25(2): 8
|
| [20] |
王国荣, 杨乾铭. 水下焊接电弧温度的光谱诊断 [J]. 华南理工大学学报(自然科学版), 1997, 25(2): 8
|
| [21] |
Han L G, Zhong Q M, Chen G D, et al. Development of local dry underwater welding technology [J]. J. Zhejiang Univ. Technol. (Eng. Sci.), 2019, 53: 1252
|
| [21] |
韩雷刚, 钟启明, 陈国栋 等. 局部干法水下焊接技术的发展 [J]. 浙江大学学报(工学版), 2019, 53: 1252
|
| [22] |
Jia C B, Zhang T, Maksimov S Y, et al. Spectroscopic analysis of the arc plasma of underwater wet flux-cored arc welding [J]. J. Mater. Process. Technol., 2013, 213: 1370
|
| [23] |
Liao H P, Wang Z M, Chi P, et al. Evolutions of microstructure and mechanical property of 308L stainless steel repaired by the local dry underwater wire arc additive manufacturing [J]. Mater. Sci. Eng., 2024, A898: 146365
|
| [24] |
Vashishtha P, Wattal R, Pandey S, et al. Problems encountered in underwater welding and remedies—A review [J]. Mater. Today Proc., 2022, 64: 1433
|
| [25] |
Zheng Z P. The research of underwater wet FCAW arc stability and weld forming quality [D]. Guangzhou: South China University of Technology, 2013
|
| [25] |
郑泽培. 水下湿法FCAW电弧稳定性及焊缝成形质量的研究 [D]. 广州: 华南理工大学, 2013
|
| [26] |
Wang C J. Research on the arc shape under high air ambient pressure [D]. Beijing: Beijing University of Chemical Technology, 2011
|
| [26] |
王春健. 高压环境下焊接电弧形态研究 [D]. 北京: 北京化工大学, 2011
|
| [27] |
Feng Y L. Research on local dry underwater robotic welding power supply for nuclear fuel pool [D]. Guangzhou: South China University of Technology, 2016
|
| [27] |
冯允樑. 核乏燃料池水下局部干法机器人焊接电源的研究 [D]. 广州: 华南理工大学, 2016
|
| [28] |
Yoder M N. Wide bandgap semiconductor materials and devices [J]. IEEE Trans. Electron Dev., 1996, 43: 1633
|
| [29] |
Wang S G, Zhang Y. Application and development of SiC materials and devices [J]. China J. Nat., 2011, 33: 42
|
| [29] |
王守国, 张 岩. SiC材料及器件的应用发展前景 [J]. 自然杂志, 2011, 33: 42
|
| [30] |
Xie F X. Research on local dry underwater robot welding power supply based on SiC power devices [D]. Guangzhou: South China University of Technology, 2018
|
| [30] |
谢芳祥. 基于SiC的水下机器人局部干法焊接电源研究 [D]. 广州: 华南理工大学, 2018
|
| [31] |
Kuang X C, Qi B J, Zheng H. Effect of pulse mode and frequency on microstructure and properties of 2219 aluminum alloy by ultrahigh-frequency pulse metal-inert gas welding [J]. J. Mater. Res. Technol., 2022, 20: 3391
|
| [32] |
Wang Z M, Jia J J, Hu J L, et al. Research on local dry underwater fast-frequency pulsed MIG welding power supply [J]. Trans. China Weld. Inst., 2024, 45(4): 13
|
| [32] |
王振民, 贾建军, 胡健良 等. 局部干法水下快频脉冲MIG焊电源研制 [J]. 焊接学报, 2024, 45(4): 13
|
| [33] |
Yao Q, Luo Z, Li Y, et al. Weld forming and mechanical property of stainless steel underwater laser welding [J]. J. Shanghai Jiaotong Univ., 2015, 49: 333
|
| [33] |
姚 杞, 罗 震, 李 洋 等. 不锈钢水下激光焊接焊缝成形与力学性能 [J]. 上海交通大学学报, 2015, 49: 333
|
| [34] |
Han L G, Wu X M, Chen G D, et al. Local dry underwater welding of 304 stainless steel based on a microdrain cover [J]. J. Mater. Process. Technol., 2019, 268: 47
|
| [35] |
Hou R L, Wang Y, Gao S, et al. Development of local dry underwater welding device [J]. Hot Work. Technol., 2024, 53(7): 76
|
| [35] |
侯瑞麟, 王 妍, 高 胜 等. 局部干法水下焊接装置的研制 [J]. 热加工工艺, 2024, 53(7): 76
|
| [36] |
Zhang W X, Guo S J, Wang Z M, et al. Small-size local dry method underwater laser welding drainage device and drainage method thereof [P]. Chin Pat, CN202311034937.6, 2023
|
| [36] |
张文旭, 郭世杰, 王振民 等. 一种小尺寸局部干法水下激光焊接排水装置及其排水方法 [P]. 中国专利, CN202311034937.6, 2023))
|
| [37] |
Guo N, Fu Y L, Xing X, et al. Underwater local dry cavity laser welding of 304 stainless steel [J]. J. Mater. Process. Technol., 2018, 260: 146
|
| [38] |
Wang Z M, Feng R J, Feng Y L, et al. Development of an intelligent wire feeder for underwater welding robot [J]. J. South China Univ. Technol. (Nat. Sci. Ed.), 2014, 42(11): 1
|
| [38] |
王振民, 冯锐杰, 冯允樑 等. 水下焊接机器人智能潜水送丝系统的研制 [J]. 华南理工大学学报(自然科学版), 2014, 42(11): 1
|
| [39] |
Han L G, Fan W Y, Wang G H, et al. Development of lightweight all-sealed wire feeder for underwater robotic welding system [J]. J. South China Univ. Technol. (Nat. Sci. Ed.), 2018, 46(5): 135
|
| [39] |
韩雷刚, 范文艳, 王国河 等. 水下焊接机器人系统轻量化全密封送丝装置的研制 [J]. 华南理工大学学报(自然科学版), 2018, 46(5): 135
|
| [40] |
Wang Z M, Zan J H, Xie W P, et al. Quick reloading type full-digital wire feeder for underwater complex working conditions [P]. Chin Pat, CN202311854086.X, 2023
|
| [40] |
王振民, 詹金桦, 谢文鹏 等. 快速换装式水下复杂工况用全数字化送丝机 [P]. 中国专利, CN202311854086.X, 2023)
|
| [41] |
Zhang N, Wang H D, Li M, et al. Multiple observer based adaptive neural network anti-disturbance control of UVMS [J]. Control Eng. China, 2021, 28: 2143
|
| [41] |
张 宁, 王红都, 黎 明 等. 基于多观测器的UVMS自适应神经网络抗扰控制 [J]. 控制工程, 2021, 28: 2143
|
| [42] |
Tian J X. Research on the coordinated control method of underwater welding manipulator [D]. Shenyang: Shenyang University, 2024
|
| [42] |
田金鑫. 水下焊接机械臂协调控制方法研究 [D]. 沈阳: 沈阳大学, 2024.
|
| [43] |
Pan Z W, Guo C H, Jia R H, et al. Design and verification of active/passive compliant control system for underwater hydraulic manipulator [J]. Chin. Hydraul. Pneumat., 2024, 48(10): 65
|
| [43] |
潘志文, 郭昌鸿, 贾睿亨 等. 水下液压机械臂主被动柔顺控制系统设计与验证 [J]. 液压与气动, 2024, 48(10): 65
|
| [44] |
Chen H B, Chen S B. Key information perception and control strategy of intellignet welding under complex scene [J]. Acta Metall. Sin., 2022, 58: 541
|
| [44] |
陈华斌, 陈善本. 复杂场景下的焊接智能制造中的信息感知与控制方法 [J]. 金属学报, 2022, 58: 541
|
| [45] |
Luo B D. Development of magnetic adsorption wheeled underwater welding robot system [D]. Guangzhou: South China University of Technology, 2023
|
| [45] |
罗犇德. 磁吸附轮式水下焊接机器人系统研制 [D]. 广州: 华南理工大学, 2023
|
| [46] |
Wang Z M, Zhu B, Chi P, et al. Modeling and verification of the magnetic wheel adsorption force in multiple working conditions for underwater welding robots [J]. J. South China Univ. Technol. (Nat. Sci. Ed.), 2025, 53(9): 86
|
| [46] |
王振民, 朱 彬, 迟 鹏 等. 水下焊接机器人磁轮吸附力多工况建模与验证 [J]. 华南理工大学学报(自然科学版), 2025, 53(9): 86
|
| [47] |
Tao Y, Wan J H, Wang T M, et al. Establishing a new paradigm of embodied intelligence: A review of the current status and development trends in humanoid robot technology [J]. J. Mech. Eng., 61(15): 121
|
| [47] |
陶 永, 万嘉昊, 王田苗 等. 构建具身智能新范式: 人形机器人技术现状及发展趋势综述 [J]. 机械工程学报. 61(15): 121
|
| [48] |
Wang Z M, Song Z L, Chi P, et al. Research status and prospect of humanoid robot welding technology [J]. Mech. Electr. Eng. Technol., 2025, 54(4): 1
|
| [48] |
王振民, 宋哲龙, 迟 鹏 等. 类人机器人焊接技术研究现状与展望 [J]. 机电工程技术, 2025, 54(4): 1
|
| [49] |
Chi P, Wang Z M, Liao H P, et al. An integrated calibration and 3D reconstruction method for humanoid welding robots [J]. Measurement, 2025, 253: 117748
|
| [50] |
Wang J F, Sun Q J, Zhang S, et al. Characterization of the underwater welding arc bubble through a visual sensing method [J]. J. Mater. Process. Technol., 2018, 251: 95
|
| [51] |
Zhao B, Chen J, Wu C S, et al. Numerical simulation of bubble and arc dynamics during underwater wet flux-cored arc welding [J]. J. Manuf. Process., 2020, 59: 167
|
| [52] |
Yang Q S, Dong Y X, Zhang R P, et al. Effects of spatial welding positions on arc bubble behavior, droplet transfer process, and weld microstructure and properties in underwater wet welding [J]. J. Manuf. Process., 2025, 135: 46
|
| [53] |
Cui X F, Chen J, Shi L, et al. Investigating the effect of hydrostatic pressure on arc and bubble transport phenomenon in underwater wet self-shielded flux cored arc welding [J]. Appl. Therm. Eng., 2024, 257: 124279
|
| [54] |
Liao H P, Zhang W M, Xie H M, et al. Effects of welding speed on welding process stability, microstructure and mechanical performance of SUS304 welded by local dry underwater pulsed MIG [J]. J. Manuf. Process., 2023, 88: 84
|
| [55] |
Chen M A, Wu C S, Lian R. Numerical analysis of dynamic process of metal transfer in GMAW [J]. Acta Metall. Sin., 2004, 40: 1227
|
| [55] |
陈茂爱, 武传松, 廉 荣. GMAW焊接熔滴过渡动态过程的数值分析 [J]. 金属学报, 2004, 40: 1227
|
| [56] |
Wu C S, Dorn L. The influence of droplet impact on metal inert gas weld pool geometry [J]. Acta Metall. Sin., 1997, 33: 774
|
| [56] |
武传松, Dorn L. 熔滴冲击力对MIG焊接熔池表面形状的影响 [J]. 金属学报, 1997, 33: 774
|
| [57] |
Huang J Q, Xue L, Huang J F, et al. Arc behavior and joints performance of CMT welding process in hyperbaric atmosphere [J]. Acta Metall. Sin., 2016, 52: 93
|
| [57] |
黄继强, 薛 龙, 黄军芬 等. 高压环境下CMT焊接电弧行为及焊缝性能 [J]. 金属学报, 2016, 52: 93
|
| [58] |
Zhao H X. Research on characteristic of hyperbaric welding arc and behavior of droplet transfer [D]. Beijing: Beijing University of Chemical Technology, 2010
|
| [58] |
赵华夏. 高压环境焊接电弧特性及熔滴过渡行为研究 [D]. 北京: 北京化工大学, 2010
|
| [59] |
Zhang Y, Jia C B, Zhao B, et al. Heat input and metal transfer influences on the weld geometry and microstructure during underwater wet FCAW [J]. J. Mater. Process. Technol., 2016, 238: 373
|
| [60] |
Liao H P, Zhang W X, Li X Y, et al. Effect of pulse current on droplet transfer behavior and weld formation of 304 stainless steel in local dry underwater pulse MIG welding [J]. Int. J. Adv. Manuf. Technol., 2022, 122: 869
|
| [61] |
Fu Y L, Guo N, Du Y P, et al. Effect of metal transfer mode on spatter and arc stability in underwater flux-cored wire wet welding [J]. J. Manuf. Process., 2018, 35: 161
|
| [62] |
Yang J, Xu S C, Jia C B, et al. Numerical analysis of arc parameters and droplet behaviors for underwater flux-cored arc welding [J]. Int. J. Therm. Sci., 2023, 194: 108601
|
| [63] |
Yuan T, Zhao X H, Jiang X Q, et al. Mechanism of grain refinement of pulse current assisted plasma arc welded Al-Mg alloy [J]. Acta Metall. Sin., 2024, 60: 323
|
| [63] |
袁 涛, 赵晓虎, 蒋晓青 等. 脉冲电流辅助等离子弧焊Al-Mg合金晶粒细化机理 [J]. 金属学报, 2024, 60: 323
|
| [64] |
Wang B S, Xu G, Ren R, et al. Effect of electropulse on dynamic precipitation and microstructure of AZ91 magnesium alloy during warm extrusion [J]. Acta Metall. Sin., 2025, 61: 129
|
| [64] |
王彬杉, 徐 光, 任 睿 等. 脉冲电流对AZ91镁合金温挤压过程中动态析出和微观组织的影响 [J]. 金属学报, 2025, 61: 129
|
| [65] |
Sun J S, Wu C S, Li Y J. Effect of welding heat input on microstructures and hardness in the haz of HQ130 steel [J]. Acta Metall. Sin., 1999, 35: 999
|
| [65] |
孙俊生, 武传松, 李亚江. 焊接热输入对HQ130钢焊接热影响区组织硬度的影响 [J]. 金属学报, 1999, 35: 999
|
| [66] |
Ji H, Deng Y L, Xu H Y, et al. The influence of welding line energy on the microstructure and property of CMT overlap joint of 5182-O and HC260YD+Z [J]. Acta Metall. Sin., 2019, 55: 376
|
| [66] |
吉 华, 邓运来, 徐红勇 等. 焊接线能量对5182-O/HC260YD+Z异种材料CMT搭接接头组织与性能的影响 [J]. 金属学报, 2019, 55: 376
|
| [67] |
Song F Y, Li Y M, Wang P, et al. Effects of heat input on the microstructure and impact toughness of weld metal processed by a new fluxnovel flux cored wire weld [J]. Acta Metall. Sin., 2016, 52: 890
|
| [67] |
宋峰雨, 李艳梅, 王 平 等. 热输入量对一种新型药芯焊丝熔敷金属组织及冲击韧性的影响 [J]. 金属学报, 2016, 52: 890
|
| [68] |
Hu C Y, Li H L, Liu X Q, et al. Investigation on microstructure and properties of the local dry underwater TIG welding of 304L stainless steel [J]. Mater. Today Commun., 2025, 44: 111978
|
| [69] |
Liao H P, Wang Z M, Zhang B, et al. Microstructure and mechanical properties of SUS304 weldments manufactured by ultrasonic vibration assisted local dry underwater welding [J]. J. Mater. Process. Technol., 2023, 322: 118183
|
| [70] |
Sun K, Zeng M, Shi Y H, et al. Microstructure and corrosion behavior of S32101 stainless steel underwater dry and wet welded joints [J]. J. Mater. Process. Technol., 2018, 256: 190
|
| [71] |
Fu Y L, Guo N, Zhu B H, et al. Microstructure and properties of underwater laser welding of TC4 titanium alloy [J]. J. Mater. Process. Technol., 2020, 275: 116372
|
| [72] |
Song Y S, Liu R, Cui Y, et al. Stress corrosion behavior of Ni-Cr-Mo-V steel in 3.5%NaCl solution under the interaction of hydrostatic pressure and tensile stress [J]. Acta Metall. Sin., 2025, 61: 309
|
| [72] |
宋昱杉, 刘 叡, 崔 宇 等. 静水压力和拉伸应力交互作用下Ni-Cr-Mo-V钢在3.5%NaCl溶液中的应力腐蚀行为 [J]. 金属学报, 2025, 61: 309
|
| [73] |
Ke W C, Liu Y, Teshome F B, et al. Numerical study on multiphase evolution and molten pool dynamics of underwater wet laser welding in shallow water environment [J]. Int. J. Heat Mass Transfer, 2024, 220: 124976
|
| [74] |
You J Y, Li Z Y, Zhu J L, et al. Underwater wet laser welding of duplex stainless steel under various water depths [J]. Mater. Sci. Eng., 2024, A891: 145930
|
| [75] |
Hu Y, Shi Y H, Sun K, et al. Microstructure evolution and mechanical performance of underwater local dry welded DSS metals at various simulated water depths [J]. J. Mater. Process. Technol., 2019, 264: 366
|
| [76] |
Huo W J, Du Y P, Guo N, et al. Study on welding quality assessment method of underwater welding for emergency repair of warship [J]. Hot Work. Technol., 2018, 47(23): 178
|
| [76] |
霍文军, 杜永鹏, 郭 宁 等. 舰艇应急抢修用水下焊接质量评估方法研究 [J]. 热加工工艺, 2018, 47(23): 178
|
| [77] |
Ji X D, Cheng T Y, Hua L, et al. Research on detection method of underwater welding quality based on acoustic signal recognition [J]. Chin. J. Eng. Des., 2023, 30: 562
|
| [77] |
纪晓东, 程天宇, 华 亮 等. 基于声信号识别的水下焊接质量检测方法研究 [J]. 工程设计学报, 2023, 30: 562
|
| [78] |
Li K. Research on data-driven underwater welding quality classification model [D]. Wuhan: Huazhong University of Science and Technology, 2023
|
| [78] |
李 康. 基于数据驱动的水下焊接质量分类模型研究 [D]. 武汉: 华中科技大学, 2023
|
| [79] |
Liu M Q, Wang X G, Mi D, et al. A new fatigue life prediction method for welded joints based on machine learning incorporating defect information and physics of failure [J]. Int. J. Fatigue, 2026, 202: 109234
|
| [80] |
Bai Y T, Xie C, Zhou X H. AI-based macro model learning for high cycle fatigue assessment of welded joints in large-span steel structures [J]. Int. J. Fatigue, 2024, 184: 108321
|
| [81] |
Liao H P, Wang Z M, Chi P, et al. Double pulsed current adopted in local dry underwater WAAM to simultaneously enhanced strength and ductility of 308 L multi-layer component [J]. J. Manuf. Process., 2024, 118: 389
|
| [82] |
Cui X F, Chen J, Zheng T, et al. Experimental and simulation research on the dynamic behavior of arc and bubble in ultrasonic frequency pulse current-assisted underwater wet flux cored arc welding [J]. Int. J. Heat Mass Transfer, 2025, 242: 126853
|
| [83] |
Chen J, Wen Z, Jia C B, et al. The mechanisms of underwater wet flux-cored arc welding assisted by ultrasonic frequency pulse high-current [J]. J. Mater. Process. Technol., 2022, 304: 117567
|
| [84] |
Madani T, Boukraa M, Aissani M, et al. Experimental investigation and numerical analysis using Taguchi and ANOVA methods for underwater friction stir welding of aluminium alloy 2017 process improvement [J]. Int. J. Press. Vessels Pip., 2023, 201: 104879
|
| [85] |
Dong J L, Zhang D T, Zhang W W, et al. Effect of post-weld heat treatments on the microstructure and mechanical properties of underwater friction stir welded joints of 7003-T4/6060-T4 aluminium alloys [J]. Mater. Sci. Eng., 2023, A862: 144423
|
| [86] |
Ghazaei Najafabadi M A, Abdollah-Zadeh A, Mofid M A. Post-weld heat treatment effects on microstructure and mechanical properties of underwater friction stir-welded AA 2024/6061 lap joints [J]. Mater. Chem. Phys., 2025, 339: 130789
|
| [87] |
Basak S, Mond M, Anaman S Y, et al. Gas pocket-assisted underwater friction stir spot welding [J]. J. Mater. Process. Technol., 2023, 320: 118100
|
| [88] |
Li H L, Liu S X, Sun F X, et al. Improvement of microstructure and mechanical properties for underwater wet 16Mn/304L dissimilar steel welded joints assisted by presetting butter layer [J]. Mater. Today Commun., 2022, 33: 104259
|
| [89] |
Zhou G F, Zhang Q H, Zhang H, et al. Design of underwater TIG welding torch and study on welding technology for nuclear power plant [J]. Electr. Weld. Mach., 2023, 53(11): 16
|
| [89] |
周国丰, 张清华, 张 红 等. 核电厂水下TIG焊炬设计及焊接工艺研究 [J]. 电焊机, 2023, 53(11): 16
|
| [90] |
Zhou Z, Yang C, Guo F T, et al. Research on the welding repair process for defects on the cladding of nuclear power plant pools based on partial dry techniques [J]. MW Met. Form., 2024, (10): 65
|
| [90] |
周 政, 杨 驰, 郭方涛 等. 基于局部干法的核电水池覆面缺陷焊接修复工艺研究 [J]. 金属加工(热加工), 2024, (10): 65
|
| [91] |
Yuan P D, Hui N M, Han X W, et al. Research on adaptive variable stiffness compliance control of nuclear power plant pool welding robot [J]. Electron. Sci. Technol., 2025, 38(5): 60
|
| [91] |
袁鹏达, 回楠木, 韩晓微 等. 核电站水池焊接机器人自适应变刚度柔顺控制 [J]. 电子科技, 2025, 38(5): 60
|
| [92] |
Zhang X F. Research on arc stability and welding processes of underwater wet welding of ship steels [D]. Guangzhou: South China University of Technology, 2021
|
| [92] |
张晓峰. 船舶用钢水下湿法焊接电弧稳定性及焊接工艺研究 [D]. 广州: 华南理工大学, 2021
|
| [93] |
Wang X M. Study on corrosion resistance of EH40 steel and its underwater wet welded joints [D]. Jinan: Qilu University of Technology, 2022
|
| [93] |
王雪妹. EH40钢及其水下湿法焊接接头的耐蚀性研究 [D]. 济南: 齐鲁工业大学, 2022
|
| [94] |
Han Y F. Control mechanisms of the processes and joint microstructure mechanical properties in 100 m level water depth submerged arc welding of EH40 steel [D]. Jinan: Shandong University, 2023
|
| [94] |
韩焱飞. 百米级水深EH40钢水下埋弧焊接工艺过程及接头组织性能的调控机理 [D]. 济南: 山东大学, 2023
|
| [95] |
Zhang W M, Zhong B L, Zeng X. On-line control and supervision of vessel underwater welding penetration [J]. J. Guangzhou Marit. Coll., 2008, 16(3): 15
|
| [95] |
张为民, 钟碧良, 曾 岫. 船舶水下焊接熔深在线监测与控制 [J]. 广州航海高等专科学校学报, 2008, 16(3): 15
|
| [96] |
Chen J J. Application of underwater repair technology for deep offshore wind power projects [J]. J. Guangzhou Marit. Univ., 2024, 32(4): 59
|
| [96] |
陈建均. 深远海风电工程水下修复工艺的应用 [J]. 广州航海学院学报, 2024, 32(4): 59
|
| [97] |
Xiao B. Treatment method of the invalid submarine cable hole of offshore wind power single pile foundation [J]. Ship Eng., 2023, 45(suppl.1): 131
|
| [97] |
肖 斌. 海上风电单桩基础海缆孔失效处理方法 [J]. 船舶工程, 2023, 45(): 131
|
| [98] |
Wang Z M, Zhang B, Zhang W X, et al. Effect of laser line energy on the microstructure, mechanical properties and corrosion resistance of Q355B welded by local dry underwater laser welding [J]. Opt. Laser Technol., 2025, 183: 112370
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|