|
|
粉末高温合金FGH4096的疲劳小裂纹扩展行为 |
杨秦政1, 杨晓光1,2( ), 黄渭清3, 石多奇1,2 |
1.北京航空航天大学 能源与动力工程学院 北京 102206 2.北京航空航天大学 航空发动机结构强度北京市重点实验室 北京 100191 3.北京理工大学 机械与车辆学院 北京 100081 |
|
Propagation Behaviors of Small Cracks in Powder Metallurgy Nickel-Based Superalloy FGH4096 |
YANG Qinzheng1, YANG Xiaoguang1,2( ), HUANG Weiqing3, SHI Duoqi1,2 |
1.School of Energy and Power Engineering, Beihang University, Beijing 102206, China 2.Beijing Key Laboratory of Aero-Engine Structure and Strength, Beihang University, Beijing 100191, China 3.School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China |
引用本文:
杨秦政, 杨晓光, 黄渭清, 石多奇. 粉末高温合金FGH4096的疲劳小裂纹扩展行为[J]. 金属学报, 2022, 58(5): 683-694.
Qinzheng YANG,
Xiaoguang YANG,
Weiqing HUANG,
Duoqi SHI.
Propagation Behaviors of Small Cracks in Powder Metallurgy Nickel-Based Superalloy FGH4096[J]. Acta Metall Sin, 2022, 58(5): 683-694.
1 |
Reed R C. The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2008: 231
|
2 |
Pollock T M, Tin S. Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure and properties [J]. J. Propul. Power, 2006, 22: 361
doi: 10.2514/1.18239
|
3 |
Chan K S. A fatigue life model for predicting crack nucleation at inclusions in Ni-based superalloys [J]. Metall. Mater. Trans., 2020, 51A: 1148
|
4 |
Texier D, Gómez A C, Pierret S, et al. Microstructural features controlling the variability in low-cycle fatigue properties of alloy Inconel 718DA at intermediate temperature [J]. Metall. Mater. Trans., 2016, 47A: 1096
|
5 |
Jha S K, Caton M J, Larsen J M. A new paradigm of fatigue variability behavior and implications for life prediction [J]. J. Mater. Sci. Eng., 2007, A468-470: 23
|
6 |
Naragani D, Sangid M D, Shade P A, et al. Investigation of fatigue crack initiation from a non-metallic inclusion via high energy X-ray diffraction microscopy [J]. Acta Mater., 2017, 137: 71
doi: 10.1016/j.actamat.2017.07.027
|
7 |
Chang P N. Competing fatigue mechanisms in nickel-base superalloy Rene 88DT [D]. Salt Lake City: The University of Utah, 2011
|
8 |
Zhang Y, Zhang Y W, Zhang N, et al. Fracture character of low cycle fatigue of P/M superalloy FGH97 [J]. Acta Metall. Sin., 2010, 46: 444
doi: 10.3724/SP.J.1037.2010.00444
|
8 |
张 莹, 张义文, 张 娜 等. 粉末冶金高温合金FGH97的低周疲劳断裂特征 [J]. 金属学报, 2010, 46: 444
|
9 |
Suresh S. Fatigue of Materials [M]. Cambridge: Cambridge University Press, 1998: 541
|
10 |
Milne I, Ritchie R O, Karihaloo B L. Comprehensive Structural Integrity: Cyclic Loading and Fatigue [M]. Amsterdam: Elsevier, 2003: 129
|
11 |
Brown C W, King J E, Hicks M A. Effects of microstructure on long and short crack growth in nickel base superalloys [J]. Met. Sci., 1984, 18: 374
doi: 10.1179/030634584790419881
|
12 |
Caton M J, Jha S K. Small fatigue crack growth and failure mode transitions in a Ni-base superalloy at elevated temperature [J]. Int. J. Fatigue, 2010, 32: 1461
doi: 10.1016/j.ijfatigue.2010.01.015
|
13 |
Pang H T, Reed P. Fatigue crack initiation and short crack growth in nickel-base turbine disc alloys-the effects of microstructure and operating parameters [J]. Int. J. Fatigue, 2003, 25: 1089
doi: 10.1016/S0142-1123(03)00146-4
|
14 |
Naragani D P, Shade P A, Kenesei P, et al. X-ray characterization of the micromechanical response ahead of a propagating small fatigue crack in a Ni-based superalloy [J]. Acta Mater., 2019, 179: 342
doi: 10.1016/j.actamat.2019.08.005
|
15 |
Liu X F. Study on small crack propagation behavior and life prediction of FGH96 powder superalloy [D]. Nanchang: Nanchang Hangkong University, 2019
|
15 |
刘晓菲. FGH96粉末高温合金疲劳小裂纹扩展行为及寿命预测研究 [D]. 南昌: 南昌航空大学, 2019
|
16 |
Künkler B, Düber O, Köster P, et al. Modelling of short crack propagation-Transition from stage I to stage II [J]. Eng. Fract. Mech., 2008, 75: 715
doi: 10.1016/j.engfracmech.2007.02.018
|
17 |
Lankford J. The influence of microstructure on the growth of small fatigue cracks [J]. Fatigue Fract. Eng. Mater. Struct., 1985, 8: 161
doi: 10.1111/j.1460-2695.1985.tb01201.x
|
18 |
Spangenberger A G, Lados D A, Coleman M, et al. Microstructural mechanisms and advanced characterization of long and small fatigue crack growth in cast A356-T61 aluminum alloys [J]. Int. J. Fatigue, 2017, 97: 202
doi: 10.1016/j.ijfatigue.2016.12.029
|
19 |
He C, Wu Y J, Peng L M, et al. Effect of microstructure on small fatigue crack initiation and early propagation behavior in Mg-10Gd-3Y-0.3Zr alloy [J]. Int. J. Fatigue, 2019, 119: 311
doi: 10.1016/j.ijfatigue.2018.10.002
|
20 |
Panwar S, Adams J F, Allison J E, et al. A grain boundary interaction model for microstructurally short fatigue cracks [J]. Int. J. Fatigue, 2018, 113: 401
doi: 10.1016/j.ijfatigue.2018.04.029
|
21 |
Tao J H, Ji L B, Hu S B. An investigation of the small fatigue crack growth behavior in Ti-6.5Al-2Zr-1Mo-1V alloy [J]. J. Alloys Compd., 2017, 695: 2764
doi: 10.1016/j.jallcom.2016.11.207
|
22 |
Zhang K, Yang K V, Lim S, et al. Effect of the presence of macrozones on short crack propagation in forged two-phase titanium alloys [J]. Int. J. Fatigue, 2017, 104: 1
doi: 10.1016/j.ijfatigue.2017.07.002
|
23 |
Singh R, Singh A, Singh P K, et al. Effect of microstructural features on short fatigue crack growth behaviour in SA508 Grade 3 Class I low alloy steel [J]. Int. J. Press. Vessels Pip., 2020, 185: 104136
|
24 |
Malitckii E, Remes H, Lehto P, et al. Strain accumulation during microstructurally small fatigue crack propagation in bcc Fe-Cr ferritic stainless steel [J]. Acta Mater., 2018, 144: 51
doi: 10.1016/j.actamat.2017.10.038
|
25 |
Schaef W, Marx M, Vehoff H, et al. A 3-D view on the mechanisms of short fatigue cracks interacting with grain boundaries [J]. Acta Mater., 2011, 59: 1849
doi: 10.1016/j.actamat.2010.11.051
|
26 |
Wan V V C, Maclachlan D W, Dunne F P E. Integrated experiment and modelling of microstructurally-sensitive crack growth [J]. Int. J. Fatigue, 2016, 91: 110
doi: 10.1016/j.ijfatigue.2016.05.027
|
27 |
Horstemeyer M F, Farkas D, Kim S, et al. Nanostructurally small cracks (NSC): A review on atomistic modeling of fatigue [J]. Int. J. Fatigue, 2010, 32: 1473
doi: 10.1016/j.ijfatigue.2010.01.006
|
28 |
Simonovski I, Cizelj L. The influence of the grain structure size on microstructurally short cracks [J]. J. Eng. Gas Turbines Power, 2009, 131: 042903
|
29 |
Miao J S, Pollock T M, Wayne Jones J. Microstructural extremes and the transition from fatigue crack initiation to small crack growth in a polycrystalline nickel-base superalloy [J]. Acta Mater., 2012, 60: 2840
doi: 10.1016/j.actamat.2012.01.049
|
30 |
Zhai T, Wilkinson A J, Martin J W. A crystallographic mechanism for fatigue crack propagation through grain boundaries [J]. Acta Mater., 2000, 48: 4917
doi: 10.1016/S1359-6454(00)00214-7
|
31 |
Pineau A. Crossing grain boundaries in metals by slip bands, cleavage and fatigue cracks [J]. Phil. Trans. R. Soc., 2015, 373A: 20140131
|
32 |
Zhang Y Q, Jiang S Y, Zhu X M, et al. Influence of twist angle on crack propagation of nanoscale bicrystal nickel film based on molecular dynamics simulation [J]. Physica, 2017, 87E: 281
|
33 |
Bieler T R, Eisenlohr P, Zhang C, et al. Grain boundaries and interfaces in slip transfer [J]. Curr. Opin. Solid State Mater. Sci., 2014, 18: 212
doi: 10.1016/j.cossms.2014.05.003
|
34 |
Larrouy B, Villechaise P, Cormier J, et al. Grain boundary-slip bands interactions: Impact on the fatigue crack initiation in a polycrystalline forged Ni-based superalloy [J]. Acta Mater., 2015, 99: 325
doi: 10.1016/j.actamat.2015.08.009
|
35 |
Luster J, Morris M A. Compatibility of deformation in two-phase Ti-Al alloys: Dependence on microstructure and orientation relationships [J]. Metall. Mater. Trans., 1995, 26A: 1745
|
36 |
Rovinelli A, Sangid M D, Proudhon H, et al. Predicting the 3D fatigue crack growth rate of small cracks using multimodal data via Bayesian networks: In-situ experiments and crystal plasticity simulations [J]. J. Mech. Phys. Solids, 2018, 115: 208
doi: 10.1016/j.jmps.2018.03.007
|
37 |
Ritchie R O, Lankford J. Small fatigue cracks: A statement of the problem and potential solutions [J]. Mater. Sci. Eng., 1986, 84: 11
doi: 10.1016/0025-5416(86)90217-X
|
38 |
Newman J C, Raju I S. An empirical stress-intensity factor equation for the surface crack [J]. Eng. Fract. Mech., 1981, 15: 185
doi: 10.1016/0013-7944(81)90116-8
|
39 |
Anderson T L. Fracture Mechanics: Fundamentals and Applications [M]. 3rd Ed., Florida: CRC press, 2017: 61
|
40 |
Kacher J, Eftink B P, Cui B, et al. Dislocation interactions with grain boundaries [J]. Curr. Opin. Solid State Mater. Sci., 2014, 18: 227
doi: 10.1016/j.cossms.2014.05.004
|
41 |
Genée J, Signor L, Villechaise P. Slip transfer across grain/twin boundaries in polycrystalline Ni-based superalloys [J]. Mater. Sci. Eng., 2017, A701: 24
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|