|
|
蝶翅精细分级结构金属纳米复合材料的研究进展 |
杨诚智, 关玉, 陈世坤, 苏慧兰( ), 张荻( ) |
上海交通大学材料科学与工程学院金属基复合材料国家重点实验室 上海 200240 |
|
Research Progress on the Metal Nanocomposites with Butterfly Wing Hierarchical Structure |
Chengzhi YANG, Yu GUAN, Shikun CHEN, Huilan SU( ), Di ZHANG( ) |
State Key Laboratory of Metal Matrix Composites, School of Materials Science and |
引用本文:
杨诚智, 关玉, 陈世坤, 苏慧兰, 张荻. 蝶翅精细分级结构金属纳米复合材料的研究进展[J]. 金属学报, 2019, 55(1): 101-108.
Chengzhi YANG,
Yu GUAN,
Shikun CHEN,
Huilan SU,
Di ZHANG.
Research Progress on the Metal Nanocomposites with Butterfly Wing Hierarchical Structure[J]. Acta Metall Sin, 2019, 55(1): 101-108.
[1] | Srinivasarao M.Nano-optics in the biological world: Beetles, butterflies, birds, and moths[J]. Chem. Rev., 1999, 99: 1935 | [2] | Foottit R G, Adler P H.Insect Biodiversity: Science and Society[M]. Chichester: John Wiley & Sons, 2009: 1 | [3] | Potyrailo R A, Ghiradella H, Vertiatchikh A, et al.Morpho butterfly wing scales demonstrate highly selective vapour response[J]. Nat. Photonics, 2007, 1: 123 | [4] | Zhang W, Tian J L, Wang Y A, et al.Single porous SnO2 microtubes templated from Papilio maacki bristles: New structure towards superior gas sensing[J]. J. Mater. Chem., 2014, 2A: 4543 | [5] | Niu H, Zhou R, Cheng C, et al.Magnetron sputtering in the creation of photonic nanostructures derived from Sasakia Charonda Formosana-butterfly wings for applied in dye-sensitized solar cells[J]. J. Power Sources, 2016, 325: 598 | [6] | Tan Y W, Gu J J, Zang X N, et al.Versatile fabrication of intact three-dimensional metallic butterfly wing scales with hierarchical sub-micrometer structures[J]. Angew. Chem., 2011, 50: 8307 | [7] | Tan Y W, Gu J J, Xu L H, et al.High-density hotspots engineered by naturally piled-up subwavelength structures in three-dimensional copper butterfly wing scales for surface-enhanced Raman scattering detection[J]. Adv. Funct. Mater., 2012, 22: 1578 | [8] | Zhu S M, Yao F, Yin C, et al.Fe2O3/TiO2 photocatalyst of hierarchical structure for H2 production from water under visible light irradiation[J]. Micropor. Mesopor. Mater., 2014, 190: 10 | [9] | Kang S H, Tai T Y, Fang T H.Replication of butterfly wing microstructures using molding lithography[J]. Curr. Appl. Phys., 2010, 10: 625 | [10] | Wu F F, Liu L X, Feng L, et al.Improving the sensing performance of double gold gratings by oblique incident light[J]. Nanoscale, 2015, 7: 13026 | [11] | Fu R R, Liu G Q, Jia C, et al.Fabrication of silver nanoplate hierarchical turreted ordered array and its application in trace analyses[J]. Chem. Commun., 2015, 51: 6609 | [12] | Schreiber R, Do J, Roller E M, et al.Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds[J]. Nat. Nanotechnol., 2014, 9: 74 | [13] | Wang H, Min S X, Ma C, et al.Synthesis of single-crystal-like nanoporous carbon membranes and their application in overall water splitting[J]. Nat. Commun., 2017, 8: 13592 | [14] | Zao Y, Chen S J, Yan C, et al.Preparation of dendritic Ag/Au bimetallic nanostructures and their application in surface-enhanced Raman scattering[J]. Thin Solid Films, 2012, 520: 2701 | [15] | Yan R Y, Chen M, Zhou H, et al.Bio-inspired plasmonic nanoarchitectured hybrid system towards enhanced far red-to-near infrared solar photocatalysis[J]. Sci. Rep., 2016, 6: 20001 | [16] | Garrett N L, Vukusic P, Ogrin F, et al.Spectroscopy on the wing: Naturally inspired SERS substrates for biochemical analysis[J]. J. Biophotonics, 2009, 2: 157 | [17] | Song F, Su H L, Han J, et al.Fabrication and good ethanol sensing of biomorphic SnO2 with architecture hierarchy of butterfly wings[J]. Nanotechnology, 2009, 20: 495502 | [18] | Wang W L, Zhang W, Chen W X, et al.Large-visual-angle microstructure inspired from quantitative design of Morpho butterflies' lamellae deviation using the FDTD/PSO method[J]. Opt. Lett., 2013, 38: 169 | [19] | Parker A R.515 million years of structural colour[J]. J. Opt., 2000, 2A: R15 | [20] | Biró L P, Bálint Z, Kertész K, et al.Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair[J]. Phys. Rev., 2003, 67E: 021907 | [21] | Vukusic P, Sambles R, Lawrence C, et al.Sculpted-multilayer optical effects in two species of Papilio butterfly[J]. Appl. Opt., 2001, 40: 1116 | [22] | Liu N, Guo H C, Fu L W, et al.Three-dimensional photonic metamaterials at optical frequencies[J]. Nat. Mater., 2008, 7: 31 | [23] | Dong Q, Su H L, Cao W, et al.Biogenic synthesis of hierarchical hybrid nanocomposites and patterning of silver nanoparticles[J]. Mater. Chem. Phys., 2008, 110: 160 | [24] | Dong Q, Su H L, Zhang D.In situ depositing silver nanoclusters on silk fibroin fibers supports by a novel biotemplate redox technique at room temperature[J]. J. Phys. Chem., 2005, 109B: 17429 | [25] | Huang J Y, Wang X D, Wang Z L.Controlled replication of butterfly wings for achieving tunable photonic properties[J]. Nano Lett., 2006, 6: 2325 | [26] | Zhang W, Zhang D, Fan T X, et al.Novel photoanode structure templated from butterfly wing scales[J]. Chem. Mater., 2009, 21: 33 | [27] | Zhu Y, Su H L, Chen Y F, et al.A facile synthesis of PdO-decorated SnO2 nanocomposites with open porous hierarchical architectures for gas sensors[J]. J. Am. Ceram. Soc., 2016, 99: 3770 | [28] | Tian J L, Zhang W, Gu J J, et al.Bioinspired Au-CuS coupled photothermal materials: Enhanced infrared absorption and photothermal conversion from butterfly wings[J]. Nano Energy, 2015, 17: 52 | [29] | Chen J J, Su H L, Song F, et al.Bioinspired Au/TiO2 photocatalyst derived from butterfly wing (Papilio Paris)[J]. J. Colloid Interf. Sci., 2012, 370: 117 | [30] | Mu Z D, Zhao X W, Xie Z Y, et al.In situ synthesis of gold nanoparticles (AuNPs) in butterfly wings for surface enhanced Raman spectroscopy (SERS)[J]. J. Mater. Chem., 2013, 1B: 1607 | [31] | Guan Y, Yang C Z, Su H L, et al.Controllable synthesis of nano Ag-Au composites mimicking fine hierarchical structure of butterfly wings[J]. Acta Mater. Compos. Sin., 2018, 35: 242(关玉, 杨诚智, 苏慧兰等. 蝶翅精细分级结构纳米Ag-Au/蝶翅复合材料的可控制备[J]. 复合材料学报, 2018, 35: 242) | [32] | Guan Y.Controllable synthesis of Ag-Au nanocomposites mimicking micro-nano structure of butterfly wings and research of SERS property [D]. Shanghai: Shanghai Jiao Tong University, 2018(关玉. 基于蝶翅微纳结构金银纳米复合材料的可控制备及SERS性能研究 [D]. 上海: 上海交通大学, 2018) | [33] | Cecchini M P, Turek V A, Paget J, et al.Self-assembled nanoparticle arrays for multiphase trace analyte detection[J]. Nat. Mater., 2013, 12: 165 | [34] | Lee S J, Morrill A R, Moskovits M.Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy[J]. J. Am. Chem. Soc., 2006, 128: 2200 | [35] | Pazos-Perez N, Wagner C S, Romo-Herrera J M, et al. Organized plasmonic clusters with high coordination number and extraordinary enhancement in Surface-Enhanced Raman Scattering (SERS)[J]. Angew. Chem., 2012, 51: 12688 | [36] | White II G V, Provost M G, Kitchens C L. Fractionation of surface-modified gold nanorods using gas-expanded liquids[J]. Ind. Eng. Chem. Res., 2012, 51: 5181 | [37] | Liu B Y, Zhang W, Lv H M, et al.Novel Ag decorated biomorphic SnO2 inspired by natural 3D nanostructures as SERS substrates[J]. Mater. Lett., 2012, 74: 43 | [38] | Koon D W, Crawford A B.Insect thin films as sun blocks, not solar collectors[J]. Appl. Opt., 2000, 39: 2496 | [39] | Tian J L, Zhang W, Fang X T, et al.Coupling of plasmon and 3D antireflection quasi-photonic crystal structure for enhancement infrared absorption[J]. J. Mater. Chem., 2015, 3C: 1672 | [40] | Jiang T F, Xie T F, Chen L P, et al.Carrier concentration-dependent electron transfer in Cu2O/ZnO nanorod arrays and their photocatalytic performance[J]. Nanoscale, 2013, 5: 2938 | [41] | Mahmoud M A, Qian W, El-Sayed M A. Following charge separation on the nanoscale in Cu2O-Au nanoframe hollow nanoparticles[J]. Nano Lett., 2011, 11: 3285 | [42] | Jiang W Y, Bai S M, Wang L J, et al.Integration of multiple plasmonic and co-catalyst nanostructures on TiO2 nanosheets for visible-near-infrared photocatalytic hydrogen evolution[J]. Small, 2016, 12: 1640 | [43] | Liu D Q, Zhang F, Fan T X.The surface enhanced Raman scattering performance of three-dimensional structures of butterfly with silver nano-particles[J]. J. Shandong Univ.(Eng. Sci.), 2016, 46(1): 93(刘德琦, 张帆, 范同祥. 蝶翅结构负载银颗粒表面增强拉曼散射性能[J]. 山东大学学报(工学版), 2016, 46(1): 93) | [44] | Tan Y W.Research on synthesis and photoresponse property of metallic functional micro/nano structures mimicking butterfly wing scales [D]. Shanghai: Shanghai Jiao Tong University, 2013(谭勇文. 仿蝶翅微纳结构金属功能材料的制备及光响应特性研究 [D]. 上海: 上海交通大学, 2013) | [45] | Chen J J, Su H L, You X L, et al.3D TiO2 submicrostructures decorated by silver nanoparticles as SERS substrate for organic pollutants detection and degradation[J]. Mater. Res. Bull., 2014, 49: 560 | [46] | Bai W S, Nie F, Zheng J B, et al.Novel silver nanoparticle-manganese oxyhydroxide-graphene oxide nanocomposite prepared by modified silver mirror reaction and its application for electrochemical sensing[J]. ACS Appl. Mater. Interfaces, 2014, 6: 5439 | [47] | Wang L, Zhang Y Y, Cheng C S, et al.A highly sensitive electrochemical biosensor for evaluation of oxidative stress based on the nanointerface of graphene nanocomposites blended with gold, Fe3O4, and platinum nanoparticles[J]. ACS Appl. Mater. Interfaces, 2015, 7: 5226 | [48] | Mohammadi A R, Graham T C M, Bennington C P J, et al. Development of a compensated capacitive pressure and temperature sensor using adhesive bonding and chemical-resistant coating for multiphase chemical reactors[J]. Sens. Actuators, 2010, 163A: 471 | [49] | Zheng X L, Guo D W, Shao Y L, et al.Photochemical modification of an optical fiber tip with a silver nanoparticle film: A SERS chemical sensor[J]. Langmuir, 2008, 24: 4394 | [50] | Zang X N, Gu J Y, Zhu S J, et al.Tunable optical photonic devices made from moth wing scales: A way to enlarge natural functional structures' pool[J]. J. Mater. Chem., 2011, 21: 13913 | [51] | Yang Q Q, Zhu S M, Peng W H, et al.Bioinspired fabrication of hierarchically structured, pH-tunable photonic crystals with unique transition[J]. ACS Nano, 2013, 7: 4911 | [52] | Lu T, Zhu S M, Ma J, et al.Bioinspired thermoresponsive photonic polymers with hierarchical structures and their unique properties[J]. Macromol. Rapid Commun., 2015, 36: 1722 | [53] | Zhang F Y, Shen Q C, Shi X D, et al.Infrared detection based on localized modification of Morpho butterfly wings[J]. Adv. Mater., 2015, 27: 1077 | [54] | Pris A D, Utturkar Y, Surman C, et al.Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures[J]. Nat. Photonics, 2012, 6: 195 | [55] | Chen J J, Su H L, Liu Y J, et al.Efficient photochemical hydrogen production under visible-light over artificial photosynthetic systems[J]. Int. J. Hydrogen Energy, 2013, 38: 8639 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|