Please wait a minute...
金属学报  2014, Vol. 50 Issue (10): 1179-1188    DOI: 10.11900/0412.1961.2014.00078
  本期目录 | 过刊浏览 |
连续加热条件下过共析钢奥氏体化研究
李俊杰, Godfrey Andrew(), 刘伟, 张弛
清华大学材料学院先进材料教育部重点实验室, 北京 100084
INVESTIGATION OF AUSTENITIZATION DURING CONTINUOUS HEATING PROCESS IN HYPEREUTECTOID STEELS
LI Junjie, Godfrey Andrew(), LIU Wei, ZHANG Chi
Key Laboratory of Advanced Materials, Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084
引用本文:

李俊杰, Godfrey Andrew, 刘伟, 张弛. 连续加热条件下过共析钢奥氏体化研究[J]. 金属学报, 2014, 50(10): 1179-1188.
Junjie LI, Andrew Godfrey, Wei LIU, Chi ZHANG. INVESTIGATION OF AUSTENITIZATION DURING CONTINUOUS HEATING PROCESS IN HYPEREUTECTOID STEELS[J]. Acta Metall Sin, 2014, 50(10): 1179-1188.

全文: PDF(9202 KB)   HTML
摘要: 

采用热膨胀仪和差示扫描量热仪(DSC)研究了过共析钢在连续加热条件下奥氏体化过程, 测定了不同阶段的临界温度点, 通过Thermo-Calc与Dictra软件进行了理论计算, 并且研究了加热速率、初始组织以及含C量对其的影响. 结果表明, 整个连续加热过程可以分为5个阶段, 临界温度点的实验结果与计算结果基本吻合. 提高加热速率可以提高逆共析转变的起始和终了温度, 增大逆共析转变温度区间, 残余渗碳体溶解终了温度不变, 奥氏体均匀化终了温度升高. 粗大的珠光体初始组织使得逆共析转变起始和终了温度提高, 增大了逆共析转变的温度区间, 残余渗碳体溶解和奥氏体均匀化阶段的终了温度也有所提高. 增大含C量对逆共析转变几乎没有影响, 但是会明显提高残余渗碳体和奥氏体均匀化阶段终了的温度.

关键词 连续加热过共析钢奥氏体化加热速率初始组织含C量    
Abstract

Cold-drawn pearlitic steel wires exhibit ultrahigh strength and have important applications where high strength and wear resistance are required. The hypereutectoid compositions present a promising potential for increasing the mechanical properties, especially the strength. The austenitization process strongly influences the following pearlitic microstructure and thus the mechanical properties. Continuous heating is always used in the industrial processing. However, the austenitization of pearlite in hypereutectoid steels during continuous heating has not been investigated systematically. In this work, the dilatometer and DSC were employed to investigate the austenitization kinetics of hypereutectoid steels during continuous heating. Microstructure evolution was observed with SEM and EBSD. The dilatometer and DSC curves were analyzed with derivative method. The whole austenitization can be divided into five stages: initial microstructure, reverse eutectoid transformation, retained cementite dissolution, homogenization and homogeneous austenite. Tangent method was used for measuring the critical temperatures of different stages. Experimental determination of transformed fraction was obtained through the lever method. Calculation with Thermo-Calc and Dictra software was carried out for the austenitization and considered to be a reasonable result by comparing with the experimental data. There is a turning point for the reduction rate of cementite and formation of austenite at the finishing temperature of reverse eutectoid transformation, which is similar with the austenitization in low carbon steel and spheroidal pearlite of hypereutectoid steel. Effects of heating rates, initial microstructure and carbon content were studied by varying the relevant parameters. Higher heating rate increases the starting and finishing temperatures of reverse eutectoid transformation and widens the temperature range, has no effect on the finishing temperature of retained cementite dissolution, increases the finishing temperature of homogenization. Coarser initial pearlitic microstructure increases the starting and finishing temperatures, widens the temperature range for reverse eutectoid transformation, increases the finishing temperature for retained cementite dissolution and homogenization. Enhancement of carbon content has little effect on the reverse eutectoid transformation, but increases the finishing temperature for retained cementite dissolution and homogenization. The effects mentioned above on the austenitization kinetics were discussed for mechanism analysis and compared with the observations of relevant systems provided by other research.

Key wordscontinuous heating    hypereutectoid steel    austenitization    heating rate    initial microstructure    carbon content
    
ZTFLH:  TG142.1  
作者简介: null

李俊杰, 男, 1987年生, 博士生

图1  不同含C量过共析钢试样的初始微观组织SEM像
图2  不同含C量过共析钢试样初始团簇组织的EBSD像
图3  1.10C试样以0.5 ℃/s连续加热过程的热膨胀原始曲线和热膨胀偏导曲线
图4  1.10C试样以0.5 ℃/s连续加热过程中在不同温度的SEM像
图5  杠杆法测定逆共析转变分数和1.10C试样以0.5 ℃/s连续加热过程中逆共析转变的动力学曲线
图6  1.10C试样以0.5 ℃/s连续加热条件下的DSC原始曲线和偏导曲线
图7  1.10C试样以0.5 ℃/s连续加热过程中各相体积分数的计算结果
图8  1.10C试样以0.5, 10和45 ℃/s连续加热条件下的热膨胀偏导曲线和逆共析转变的动力学曲线
图9  1.10C试样逆共析转变速率随温度变化的Dictra计算结果
图10  1.10C和1.10C-c试样以0.5 ℃/s连续加热条件下的热膨胀偏导曲线和逆共析转变的动力学曲线
图11  0.90C, 1.05C和1.10C试样以10 ℃/s连续加热条件下的热膨胀偏导曲线和逆共析转变动力学曲线
[1] Li Y J, Choi P, Goto S, Borchers C, Raabe D, Kirchheim R. Acta Mater, 2012; 60: 4005
[2] Tashiro H. Nipp Steel Technol Rep, 1999; 80: 6
[3] Choi H C, Park K T. Scr Mater, 1996; 34: 857
[4] Taleff E M, Sridhar G B, Pourladian B. Wire J Int, 2003; 36: 73
[5] Bae C M, Nam W J, Lee C S. Metall Mater Trans, 2000; 31A: 2665
[6] Li J J, Godfrey A, Liu W. Acta Metall Sin, 2013; 49: 583
[6] (李俊杰, Godfrey Andrew, 刘 伟. 金属学报, 2013; 49: 583)
[7] Lee S J, Park J S, Lee Y K. Scr Mater, 2008; 59: 87
[8] Chae J Y, Jang J H, Zhang G, Kim K H, Lee J S, Bhadeshia H, Suh D W. Scr Mater, 2011; 65: 245
[9] San Martin D, Rivera-Diaz-Del-Castillo P E J, Garcia-De-Andres C. Scr Mater, 2008; 58: 926
[10] Shtansky D V, Nakai K, Ohmori Y. Acta Mater, 1999; 47: 2619
[11] Karmazin L, Krejci J. Mater Sci Eng, 1994; A185: 5
[12] De Andres C , Caballero F G, Capdevila C, Alvarez L F. Mater Charact, 2002; 48: 101
[13] Gupta C, Dey G K, Chakravartty J K, Srivastav D, Banerjee S. Scr Mater, 2005; 53: 559
[14] Xu G, Wan L, Yu S F, Liu L, Luo F. Mater Lett, 2008; 62: 3978
[15] Li Z D, Miyamoto G, Yang Z G, Furuhara T. Metall Mater Trans, 2011; 42A: 1586
[16] Yang Z N, Yang Z G, Xia Y, Zhang C. Acta Metall Sin, 2013; 49: 890
[16] (杨泽南, 杨志刚, 夏 苑, 张 弛. 金属学报, 2013; 49: 890)
[17] Xia Y, Enomoto M, Yang Z G, Li Z D, Zhang C. Philos Mag, 2013; 93: 1095
[18] Han K, Mottishaw T D, Smith G, Edmonds D V, Stacey A G. Mater Sci Eng, 1995; A190: 207
[19] Zhang Y D, Esling C, Gong M L, Vincent G, Zhao X, Zuo L. Scr Mater, 2006; 54: 1897
[20] Walentek A, Seefeldt M, Verlinden B, Aernoudt E, Van Houtte P. J Microsc, 2006; 224: 256
[21] Farahat A. J Mater Process Technol, 2008; 204: 365
[22] Liu Y C, Sommer F, Mittemeijer E J. Acta Mater, 2006; 54: 3383
[23] Liu Y C, Sommer F, Mittemeijer E J. Acta Mater, 2003; 51: 507
[24] Oliveira F L G, Andrade M S, Cota A B. Mater Charact, 2007; 58: 256
[25] Scheil E. Arch Eisenhutten, 1935; 8: 565
[26] Li Z D, Miyamoto G, Yang Z G, Furuhara T. Scr Mater, 2009; 60: 485
[27] Caballero F G, Capdevila C, de Andres C G. Mater Sci Technol, 2001; 17: 686
[28] Caballero F G, Capdevila C, de Andres C . Metall Mater Trans, 2001; 32A: 1283
[1] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
[2] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[3] 胡可, 李小强, 屈盛官, 杨超, 李元元. 93W-5.6Ni-1.4Fe高比重合金放电等离子主烧结曲线的建立*[J]. 金属学报, 2014, 50(6): 727-736.
[4] 杨泽南,杨志刚,夏苑,张弛. 层片状珠光体组织奥氏体化速率的计算[J]. 金属学报, 2013, 49(7): 890-896.
[5] 李俊杰,Godfrey Andrew,刘伟. 奥氏体化与冷却速率对过共析钢组织的影响[J]. 金属学报, 2013, 49(5): 583-592.
[6] 张杰,蔡庆伍,武会宾,樊艳秋. 快速加热回火对690 MPa级海洋工程用钢组织和性能的影响[J]. 金属学报, 2013, 49(12): 1549-1557.
[7] 李昭东 宫本吾郎 杨志刚 张玉朵 张弛 古原忠. Mn和Si对Fe-0.6C钢中珠光体-奥氏体相变的影响[J]. 金属学报, 2010, 46(9): 1066-1074.
[8] 陈伟 李龙飞 孙祖庆 张艳 杨王玥. 马氏体温变形超细化过共析钢[J]. 金属学报, 2009, 45(6): 697-703.
[9] 陈伟 李龙飞 杨王玥 孙祖庆 何建平. 过共析钢温变形过程中的组织演变 I. 铁素体的等轴化及Al的影响[J]. 金属学报, 2009, 45(2): 151-155.
[10] 陈伟 李龙飞 杨王玥 孙祖庆 张艳. 过共析钢温变形过程中的组织演变 II. 渗碳体的球化及Al的影响[J]. 金属学报, 2009, 45(2): 156-160.
[11] 陈伟; 李龙飞; 杨王玥; 孙祖庆 . Al对过共析钢缓冷相变和过冷奥氏体动态相变组织的影响[J]. 金属学报, 2008, 44(9): 1069-1075 .
[12] 王晓颖; 张瑞杰; 介万奇 . 匀速加热过程中第二相的扩散溶解[J]. 金属学报, 2004, 40(4): 434-438 .
[13] 顾剑锋; 潘健生; 胡明娟; 沈甫法 . 9Cr2Mo冷轧辊加热过程的数值模拟[J]. 金属学报, 1999, 35(12): 1266-1270 .
[14] 朱晓东;李承基;章守华;邹明;苏世怀. Si对过共析锰钢力学性能及晶界组织的影响[J]. 金属学报, 1996, 32(11): 1130-1138.
[15] 刘宗德;韩铭宝;孙承纬;王仁. 金属快速加热的非弹性热软化研究[J]. 金属学报, 1995, 31(19): 329-336.