Please wait a minute...
金属学报  2010, Vol. 46 Issue (8): 991-996    DOI: 10.3724/SP.J.1037.2010.00073
  论文 本期目录 | 过刊浏览 |
受控脉冲穿孔等离子弧焊小孔热滞后效应的研究
贾传宝1, 2, 武传松1, 高进强1
1.山东大学材料液固结构演变与加工教育部重点实验室, 济南 250061
2.山东省科学院海洋仪器仪表研究所, 青岛 266001
STUDY ON THE THERMAL LAG EFFECT OF KEYHOLE IN CONTROLLED PULSE KEY–HOLING PLASMA ARC WELDING
JIA Chuanbao 1,2, WU Chuansong 1, GAO Jinqiang 1
1. Key Lab for Solid–Liquid Structure Evolution and Materials Processing (Ministry of Education), Shandong University,Jinan 250061
2. Institute of Oceangraphic Instrumentation, Shandong Academy of Science, Qingdao 266001
引用本文:

贾传宝 武传松 高进强. 受控脉冲穿孔等离子弧焊小孔热滞后效应的研究[J]. 金属学报, 2010, 46(8): 991-996.
. STUDY ON THE THERMAL LAG EFFECT OF KEYHOLE IN CONTROLLED PULSE KEY–HOLING PLASMA ARC WELDING[J]. Acta Metall Sin, 2010, 46(8): 991-996.

全文: PDF(1426 KB)  
摘要: 

利用自主研发的受控脉冲穿孔等离子弧焊接系统及其控制模式, 进行了等厚度板和变厚度板的受控脉冲穿孔等离子弧焊接工艺实验. 本文中定义小孔的热滞后时间(tL)为尾焰电压信号达到其峰值70\%时所需时间(tVE0.7)与焊接电流达到峰值所需时间(tIP)之差, 并测定了不同工艺条件下小孔的热滞后时间.实验结果表明, 等厚度不锈钢板焊接实验条件下, 小孔的热滞后平均时间是0.36 s; 变厚度不锈钢板焊接实验条件下, 随着试件厚度逐渐变薄, 焊接电流峰值不断降低,但各个周期内小孔的热滞后时间的波动幅度不大, 其平均值为0.22 s.

关键词 小孔 热滞后效应 受控脉冲穿孔 等离子弧焊    
Abstract

Under the action of controlled pulse current waveform, the welding current varies dynamically with the real–time key–holing situation, and there is a time lag between current signal and keyhole generation in plasma arc welding process, which is caused by the keyhole thermal lag effect. In this case, there are many pulse parameters like peak current level, duration and its dropping rate, which inevitably complicate the process. Determining the keyhole thermal lag time under various welding conditions is of great significance to ensure penetration depth and weld quality. In this paper, an experimental system for controlling pulse key–holing plasma arc welding has been developed, which measures both the welding current and efflux plasma voltage signals in real–time for characterizing the keyhole situation. The keyhole thermal lag time is defined as the difference between the instant at which the efflux plasma voltage is at 70% of its peak value and the intant at which the weldincurrent is at its peak level. The experiments are conducted to determine the valus of keyhole theral lag time by the in–rocess sampling during welding of constant–thickness and varied–thickness test plates of stainless steel. For constant–thickness ones, the average lag tme is 0.36 s, for varied–thickness ones, the welding current peak value is lowered with plate thicknss thinned gradually, but the keyhole thermal lag time is kept at an averaged value of 0.22 s with a lss deviation.

Key wordskeyhole    thermal lag effect    controlled pulse current    plasma arc welding
收稿日期: 2010-02-05     
基金资助:

国家自然科学基金重点资助项目50936003

作者简介: 贾传宝, 男, 1983年生, 博士
[1] Zhang Y M and Zhang S B. Weld. J., 1999, 75(2): 53s [2] Zhang Y M, Zhang S B. Weld. J., 1998, 77(6): 57 [3] Martikainen J K and Moisio T J I. Weld. J., 1993, 72(7): 329 [4] Vilkas E P. 1 Weld. J., 1991, 70(4): 49 [5] Irving B. Weld. J., 1997, 76(1): 34 [6] Irving B. Weld. J., 1992, 71(12): 49 [7] Nunes A C., Weld. J., 1984, 63(9): 27 [8] Keanini R G and Rubinsky B. Weld. J., 1990, 69(6): 41 [9] Dong C L, Wu L and Shao Y C. Chinese J. Mech. Eng., 2000, 11(5): 577 (董春林, 吴林, 邵亦陈. 中国机械工程, 2000, 11(5): 577) [10] Chen Q, Sun Z G, Sun J W, Wang Y W. Trans. Nonferrous Metals Society of China, 2004, 14(1): 116 [11] Zhu Y F, Zhang H, Dong C L. et al. Areospace Manufacturing Technology, 2002, (2): 22 (朱轶峰, 张慧, 董春林等. 航天制造技术, 2002, (2): 22) [12] Song D F, Hu S S, Han J, Zhu Y X. Trans. China Weld. Institution, 2006, 27(6): 45 (宋东风, 胡绳荪, 韩俭, 朱玉欣.焊接学报, 2006, 27(6): 45) [13] Zhu Y F, Zhang H, Shao Y C, Dong C L. Plasma Processing Technology, 1999 Supplement issue: 53 (朱轶峰, 张慧, 邵亦陈, 董春林.等离子加工技术, 1999年增刊: 53) [14] Jia C B, Wu C S, Zhang Y M. Trans. Nonferrous Met. Soc. China, 2009, 19: [15] Jia C B, Wu C S, Zhang Y M. Chinese Journal of Mechanical Engineering, 2010, in press
[1] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[2] 徐斌,胡庆贤,陈树君,蒋凡,王晓丽. K-PAW准稳态过程小孔与熔池动态行为的数值模拟*[J]. 金属学报, 2016, 52(7): 804-810.
[3] 菅晓霞,武传松. e蒸气对等离子弧焊接熔池行为的影响*[J]. 金属学报, 2016, 52(11): 1467-1476.
[4] 胥国祥, 张卫卫, 刘朋, 杜宝帅. 激光+GMAW复合热源焊熔池流体流动的数值分析*[J]. 金属学报, 2015, 51(6): 713-723.
[5] 李岩,冯妍卉,张欣欣, 武传松. 考虑小孔演变的等离子弧焊接动态热源模型及验证[J]. 金属学报, 2013, 49(7): 804-810.
[6] 张涛 武传松 陈茂爱. 穿孔等离子弧焊接熔池流动和传热过程的数值模拟[J]. 金属学报, 2012, 48(9): 1025-1032.
[7] 孙俊华 武传松 秦国梁. 受控脉冲PAW过程小孔动态变化的数值模拟[J]. 金属学报, 2011, 47(8): 1061-1066.
[8] 霍玉双 武传松 陈茂爱. 等离子弧焊接小孔形状和穿孔过程的数值分析[J]. 金属学报, 2011, 47(6): 706-712.
[9] 洪巨锋 谭华 陈林豆 李劲 李莉 蒋益明. UNS S32304双相不锈钢等离子弧焊接头的组织及其耐点蚀性能[J]. 金属学报, 2011, 47(11): 1445-1449.
[10] 张转转 胥国祥 武传松. 基于小孔形状的TCS不锈钢激光+GMAW-P复合焊热场模型[J]. 金属学报, 2011, 47(11): 1450-1458.
[11] 王小杰 武传松 陈茂爱. 等离子弧定点焊熔池穿孔过程的数值分析[J]. 金属学报, 2010, 46(8): 984-990.
[12] 武传松; 王怀刚; 张明贤 . 小孔等离子弧焊接热场瞬时演变过程的数值分析[J]. 金属学报, 2006, 42(3): 311-316 .
[13] 孙俊生; 武传松; 董博玲; Y.M.Zhang . PAW+TIG电弧双面焊接小孔形成过程的数值模拟[J]. 金属学报, 2003, 39(1): 79-84 .