Please wait a minute...
金属学报  2010, Vol. 46 Issue (7): 810-813    DOI: 10.3724/SP.J.1037.2010.00017
  论文 本期目录 | 过刊浏览 |
D+离子束辐照对Ti膜的影响
王博宇1), 向伟1),   谈效华1),  戴晶怡1),   程亮1),  秦秀波2)
1) 中国工程物理研究院电子工程研究所, 绵阳 621900
2) 中国科学院高能物理研究所核分析技术重点实验室, 北京 100049
EFFECT OF D+ BEAM IRRADIATION ON Ti FILM
WANG Boyu1), XIANG Wei1), TAN Xiaohua1), DAI Jingyi1), CHENG Liang1), QIN Xiubo2)
1) Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621900
2) Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
引用本文:

王博宇 向伟 谈效华 戴晶怡 程亮 秦秀波. D+离子束辐照对Ti膜的影响[J]. 金属学报, 2010, 46(7): 810-813.
, . EFFECT OF D+ BEAM IRRADIATION ON Ti FILM[J]. Acta Metall Sin, 2010, 46(7): 810-813.

全文: PDF(769 KB)  
摘要: 

在加速器上, 利用不同能量的D+离子束对Ti膜进行连续辐照, 利用慢正电子湮没技术和SEM对束流辐照前后Ti膜进行表征. 结果表明, D+离子束对Ti膜造成辐照损伤, 随D+离子束能量增大, 辐照损伤的程度加重; 辐照损伤最大值在0.3 μm处; D+离子束对Ti膜表面造成不同程度的烧蚀, 随D+离子束能量增加, 膜表面烧蚀程度增加, 膜表面几何不均匀性导致膜表面出现选择性烧蚀. 数值计算表明, 随能量增加, D+离子在Ti膜中的能量沉积增大, 这与SEM观测结果相符.

关键词 D+Ti膜慢正电子湮没技术    
Abstract

Effect of the D+ ion beam on Ti film is studied by radiating the Ti films with different energy D+ beams on electrostatic accelerator. Slow positron annihilation spectroscopy and SEM are used to characterize the films. With the D+ beam energy increases, the extent of radiation damage and the surface ablation of Ti films increase. The maximum of radiation damage locates at 0.3 μm depth. The geometrical non-uniformity on original surface is the main reason for the ablation behavior on Ti films by inducing a selective ablation under radiation. Radiation damage and energy loss of D+ in Ti film are discussed in detail by the numerical simulation of the beam and the solid interaction. It shows that the maximum radiation damage is at 0.65 $\mu$m depth and energy loss of D+ beam in Ti films accords with the experimental observation.

Key wordsD+    Ti film    slow positron annihilation spectroscopy
收稿日期: 2010-01-08     
基金资助:

中国工程物理研究院电子工程研究所科技创新基金资助项目S20090801

作者简介: 王博宇, 男, 1982年生, 助理研究员

[1] Reijonen J. Nucl Instrum Methods Phys Res Sect, 2007; 261B: 272
[2] Pauli M, Kehayias, Joseph J, Kehayias. Nucl Instrum Methods Phys Res Sect, 2007; 261B: 827
[3] Aleksandrov V D, Bogolubov E P, Bochkarev O V, Korytko L A, Nazarov V I, Polkanov Y G, Ryzhkov V I, Khasaev T O. Appl Radiat Isot, 2005; 63: 537
[4] Lunardon M, Nebbia G, Pesente S. Appl Radiat Isot, 2004; 61: 43
[5] Jarman S E, Pinchin J, Brushwood J M. J Radioanal Nucl Chem, 2007; 271: 47
[6] Solano I, Reichenbach B, Schwoebel P R, Chichester D L, Holland C E, Hertz K L, Brainard J P. Nucl Instrum Methods Phys Res Sect, 2008; 587A: 76
[7] Li F, Chen Y X,Wan X J,Wang Q J, Liu Y Y. Acta Metall Sin, 2006; 42: 143
(李芳, 陈业新, 万晓景, 王青江, 刘羽寅. 金属学报, 2006; 42: 143)
[8] Hughey B J. Nucl Instrum Methods Phys Res Sect, 1995; 95B: 393
[9] Yao Z E, Chen S W, Su T L. Nuclear Tech, 2004; 27: 787
(姚泽恩, 陈尚文, 苏桐龄. 核技术, 2004; 27: 787)
[10] Miao S M, Lei M K. Acta Metall Sin, 2004; 40: 1221
(苗收谋, 雷明凯. 金属学报, 2004; 40: 1221)
[11] Zhu X P, Lei M K, Ma T C. Nucl Instrum Methods Phys Res Sect, 2003; 211B: 827
[12] Yonts O C, Strehlow R A. J Appl Phys, 1962; 33: 2903
[13] Uedono A, Tanigawa S. Appl Phys Lett, 1988; 53: 25
[14] Ziegler J F, Biersack J, Littmark U. The Stopping and Range of Ions in Matter. New York: Pergamon Press, 1985: 1

[1] 刘洋,向伟,王博宇. 脉冲离子束辐照对TiH2膜表面微观结构的影响[J]. 金属学报, 2013, 49(10): 1269-1274.
[2] 谢天生; 杜昊; 孟祥敏; 孙超; 闻立时 . 纳米Ti膜形成过程的扫描隧道显微镜观察[J]. 金属学报, 2001, 37(2): 113-117 .