Please wait a minute...
金属学报  1994, Vol. 30 Issue (9): 409-415    
  论文 本期目录 | 过刊浏览 |
TA2/A3爆炸复合界面微观断裂机制的SEM原位研究
杨扬;张新明;李正华;李青云
中南工业大学;西北有色金属研究院
IN SITU SEM OBSERVATION ON MICROFRACTURE OF TA2/A3 EXPLOSION CLADDING INTERFACE
YANG Yang;ZHANG Xinming(Central-South University of Technology; Changsha); LI Zhenghua; LI Qingyun(North-West Institute for Nonferrous Metal Research; Baoji)(Manuscript received 13 December;1993)
引用本文:

杨扬;张新明;李正华;李青云. TA2/A3爆炸复合界面微观断裂机制的SEM原位研究[J]. 金属学报, 1994, 30(9): 409-415.
, , , . IN SITU SEM OBSERVATION ON MICROFRACTURE OF TA2/A3 EXPLOSION CLADDING INTERFACE[J]. Acta Metall Sin, 1994, 30(9): 409-415.

全文: PDF(617 KB)  
摘要: 借助SEM对TA2/A3爆炸复合界面(包括细小波状界面,中波界面及具有再入射流熔块的大波界面)的微观断裂机制进行了动态研究。结果表明,爆炸复合界面微观断裂机制是:微裂纹在波头夹杂或再入射流熔块内及熔块和基体界面处萌生,并在裂尖应力场作用下沿与外载垂直方向扩展。同时,沿TA2/A3界面产生微裂纹并在外载作用下,相互连接而扩展。
关键词 爆炸复合界面微观断裂机制SEM原位研究绝热剪切带    
Abstract:In-situ SEM observations on TA2/A3 explosion cladding interfaces have been performed to examine the microfracture behaviour. The microfracture mechanism of explosion cladding TA2/A3 interface seems that the microcracks initiate inside the swirls or inside the molten material as well as at the boundary between the molten material and the A3 matrix,and penetrate into the nearby A3 matrix in the direction normal to the tensile load direction under the action of the crack-tip stress field. At the same time, the microcracks initiate along the TA2 /A3 interface, and link up under the tensile load. Terminal cleavage fracture takes place mainly in the recrystallized and grain abnormal growth region on the A3 side in the vicinity of TA2/A3 interface.Localized fracture takes place along the interface molten layer.Correspondent: YANG Yang.(Departnient of Materials. Central-South University of Technology.Changsha 410083)
Key words explosion cladding interface    microfracture mechanism    in-situ SEM observation    adiabatic shear band
收稿日期: 1994-09-18     
1段文森,鲁汉民,吴敬梓.稀有金属材料与工程,1989;3:62鲁汉民,段文森,吴敬梓.稀有金属材料与工程,1989;2:193YoshiiK,KawobeH,YamadaT.MechBehavMater.1972;1:25764HorsthPJ,WilsonRN.JInstMet,1963;92:825TetelmanAS,RobertsonWD.ActaMetall,1963;11:4156StrohAN.procRSocLondon,1954;223A:4041955;232A:5487CottrellAH.TransAIME,1958;212:1928WeissBZ.ZMetallk,1971;62:1590
[1] 孙秀荣, 王会珍, 杨平, 毛卫民. 不同结构金属高速压缩力学行为及微观剪切结构差异*[J]. 金属学报, 2014, 50(4): 387-394.
[2] 杨瑞青; 李守新; 李广义; 张哲峰 . 不同取向疲劳态铜单晶高速冲击下的绝热剪切带[J]. 金属学报, 2006, 42(3): 245-250 .
[3] 李军伟; 李明扬; 郭小龙; 李守新 . 疲劳态铜单晶高速形变下绝热剪切带的形成[J]. 金属学报, 2005, 41(2): 161-166 .
[4] 魏志刚; 李永池 . 冲击载荷作用下钨合金材料绝热剪切带形成机理[J]. 金属学报, 2000, 36(12): 1263-1268 .
[5] 魏志刚; 李凡庆; 李永池; 胡时胜 . 粉末烧结钨合金材料的绝热剪切变形局域化实验研究[J]. 金属学报, 1999, 35(8): 829-833 .
[6] 张保法;沈万慈;刘英杰;王远飞;唐祥云. 白层中的绝热剪切带[J]. 金属学报, 1997, 33(11): 1161-1164.
[7] 董瀚;李桂芬;陈南平. 高强度钢中绝热剪切带的组织和硬度[J]. 金属学报, 1996, 32(6): 599-604.
[8] 李强;马常祥;赖祖涵. 30MnCrNiMoB低合金钢绝热剪切带的形成机制与微结构[J]. 金属学报, 1995, 31(23): 505-510.