Please wait a minute...
金属学报  2023, Vol. 59 Issue (7): 947-960    DOI: 10.11900/0412.1961.2022.00027
  研究论文 本期目录 | 过刊浏览 |
不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界
王宗谱1, 王卫国1,2(), Rohrer Gregory S3, 陈松1,2, 洪丽华1,2, 林燕1,2, 冯小铮1, 任帅1, 周邦新4
1福建工程学院 晶界工程研究所 福州 350118
2福建工程学院 材料科学与工程学院 福州 350118
3Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA15213 -3890, USA
4上海大学 材料研究所 上海 200072
{111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures
WANG Zongpu1, WANG Weiguo1,2(), Rohrer Gregory S3, CHEN Song1,2, HONG Lihua1,2, LIN Yan1,2, FENG Xiaozheng1, REN Shuai1, ZHOU Bangxin4
1Institute of Grain Boundary Engineering, Fujian University of Technology, Fuzhou 350118, China
2School of Materials Science and Technology, Fujian University of Technology, Fuzhou 350118, China
3Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA15213 -3890, USA
4Institute of Materials, Shanghai University, Shanghai 200072, China
引用本文:

王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
Zongpu WANG, Weiguo WANG, Gregory S Rohrer, Song CHEN, Lihua HONG, Yan LIN, Xiaozheng FENG, Shuai REN, Bangxin ZHOU. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. Acta Metall Sin, 2023, 59(7): 947-960.

全文: PDF(6204 KB)   HTML
摘要: 

经470~520℃双级固溶处理的国产Al-Zn-Mg-Cu (7A85) 合金分别在250、300、350、400和450℃施行厚度减缩量为80%的轧制变形后,立即经520℃、30 min完成再结晶退火处理。采用基于电子背散射衍射和五参数分析的晶界界面匹配表征方法对上述试样进行测试和分析发现,轧制温度对后续再结晶退火{111}/{111}近奇异晶界的形成有显著影响,表现为{111}/{111}近奇异晶界比例随轧制温度的升高呈现先上升、然后下降至一定值并保持基本恒定的变化规律;经300℃轧制及后续再结晶退火,{111}/{111}近奇异晶界比例达到极大值5.0%,是奇异晶界(共格孪晶界)比例的近10倍。对试样显微组织进行观察和分析表明,经300℃轧制,样品中形成特定变形亚结构,并且具备一定形变储能,在后续再结晶退火过程中,其组织演化以连续再结晶为主,有利于{111}/{111}近奇异晶界的形成。相反,经350℃及以上温度轧制,试样发生了不连续动态再结晶,不利于后续退火{111}/{111}近奇异晶界的形成;经250℃轧制,试样内存在较高储能,在后续退火过程中发生了不连续再结晶,也不利于{111}/{111}近奇异晶界的形成。离线原位表面侵蚀实验和高分辨透射电子显微镜观察表明,{111}/{111}近奇异晶界的腐蚀抗力显著高于一般晶界,此类晶界具有旋错结构特征,其结构有序度显著高于一般晶界。

关键词 Al-Zn-Mg-Cu合金超高强铝合金近奇异晶界晶界界面匹配晶界腐蚀    
Abstract

Recent development in grain boundary design and control indicates that manipulating the {111}/{111} near singular boundaries will be a promising pertinent to improve the performance against intergranular corrosion attacks for the high stacking fault energy face-centered cubic metals such as aluminum and its alloys. In the current study, five samples of a home-made Al-Zn-Mg-Cu super-high-strength aluminum alloy were rolled at temperatures of 250, 300, 350, 400, and 450oC, followed by 30 min annealing at 520oC. A method of grain boundary interconnection characterization based on electron backscatter diffraction and five parameter analysis was utilized to assess the {111}/{111} near singular boundaries in the samples as processed. The preceding rolling temperature was discovered to have a significant impact on the formation of {111}/{111} near singular boundaries during the subsequent annealing at 520oC, that is, the fraction of {111}/{111} near singular boundaries out of the entire grain boundaries increases at first and then decreases as the preceding rolling temperature increases from 250oC to 450oC. In the five samples as processed, the one rolled at 300oC followed by annealing at 520oC has a peak content of {111}/{111} near singular boundaries and the fraction reaches 5.0%, which is 10 times higher compared to that of the singular boundaries or namely the coherent twin boundaries. Further investigations reveal that the sample rolled at 300oC possesses a specific deformation substructure as well as suitable stored energy, resulting in continuous recrystallization during the successive annealing. This type of behavior aids in the formation of {111}/{111} near singular boundaries. The samples rolled at or above 350oC, on the other hand, exhibit discontinuous dynamic recrystallization, which is detrimental to the development of {111}/{111} near singular boundaries during subsequent annealing. Compared to the sample rolled at 300oC, the sample rolled at 250oC has higher stored energy and it improves discontinuous recrystallization during the subsequent annealing. This also harms the formation of {111}/{111} near singular boundaries. Off-line in-situ surface etching test and high-resolution transmission electron microscope (HR-TEM) observation demonstrate that the {111}/{111} near singular boundaries have much higher resistance to intergranular corrosion in comparison to the random boundaries, they possess disclination structures of which the atomic ordering is much higher than that of the random boundaries. The results show that the {111}/{111} near singular boundary is regulable, and to further improving the fraction of such boundaries by manipulating the microstructure evolution will be effective in the practice of how reducing the intergranular corrosion in the aluminum and its alloys.

Key wordsAl-Zn-Mg-Cu alloy    super-high strength aluminum alloy    near singular boundary    grain boundary inter-connection    intergranular corrosion
收稿日期: 2022-01-21     
ZTFLH:  TG113  
基金资助:国家自然科学基金项目(51971063);中央引导地方科技发展专项项目(2019L3010)
通讯作者: 王卫国,wang_weiguo@vip.163.com,主要从事金属和无机非金属材料晶界工程研究
Corresponding author: WANG Weiguo, professor, Tel: (0591)22863515, E-mail: wang_weiguo@vip.163.com
作者简介: 王宗谱,男,1996年生,硕士生
SampleRollingThicknessAnnealing
temperature / oCreduction / %
A25080520oC, 30 min
B30080520oC, 30 min
C35080520oC, 30 min
D40080520oC, 30 min
E45080520oC, 30 min
A125080-
B130080-
C135080-
D140080-
E145080-
表1  Al-Zn-Mg-Cu 合金样品编号及其加工状态
图1  样品A~E的取向成像显微(OIM)像、晶界网络(GBN)图和晶界取向差分布(MD)
GB rotationSample ASample BSample CSample DSample E
axesLF / %GNNF / %LF / %GNNF / %LF / %GNNF / %LF / %GNNF / %LF / %GNNF / %
<111>5.7436135.806.1331246.156.0540246.146.2135166.185.4928125.59
<112>11.73732411.7711.90607211.9511.46758911.5811.92674111.8512.28612212.17
<122>16.491026216.4916.70852116.7717.141122817.1116.80966717.0016.43822016.34
表2  样品A~E经轴过滤获得的取向差转轴为<111>、<112>和<122>的晶界数量及其比例统计
图2  样品A~E的固定转轴晶界取向差分布
图3  样品A不同取向差{111}/{111}近奇异晶界(NSB)的五参数晶界面分布图(投影在(001)内)
图4  样品B不同取向差{111}/{111}-NSB的五参数晶界面分布图(投影在(001)内)
图5  样品C不同取向差{111}/{111}-NSB的五参数晶界面分布图(投影在(001)内)
SampleMisorientation [uvw]/θPi / %MiWi / (o)Fi / %
A[111]/20°0.201.441.880.10
[111]/45°0.691.352.070.36
[111]/50°0.901.151.970.46
[112]/30°0.851.672.290.44
[122]/35°1.211.412.030.63
B[111]/15°0.232.171.600.13
[111]/35°0.502.151.800.27
[111]/40°0.591.142.120.30
[111]/45°0.711.161.850.37
[111]/50°1.031.471.310.55
[111]/55°1.241.401.310.66
[122]/20°0.741.471.910.39
[122]/25°0.781.511.880.41
[122]/30°1.011.741.560.54
[122]/35°1.121.162.050.57
[112]/15°0.681.152.210.35
[112]/30°0.951.281.530.50
C[111]/20°0.231.721.690.12
[111]/25°0.251.931.670.13
[111]/30°0.331.291.860.17
[111]/50°0.891.591.900.46
[122]/20°0.691.382.200.35
[122]/25°0.761.132.280.39
[122]/35°1.051.331.780.54
D[111]/20°0.171.741.750.09
[111]/25°0.292.841.370.17
[111]/30°0.381.661.410.20
[111]/35°0.581.382.000.30
[111]/40°0.621.531.690.33
[111]/50°0.911.172.100.46
[112]/15°0.451.442.130.23
[112]/20°0.611.541.570.32
[112]/25°0.761.462.200.39
E[111]/20°0.201.612.030.10
[111]/25°0.342.171.870.18
[111]/30°0.331.182.270.17
[111]/35°0.461.292.170.24
[111]/40°0.481.582.410.25
[111]/55°1.031.442.180.53
[122]/35°1.411.332.010.73
[112]/25°0.891.631.950.46
[112]/15°0.521.861.930.27
表3  样品A~E的{111}/{111}-NSB比例定量计算
图6  样品A~E的{111}/{111}-NSB和奇异晶界(SB)比例
图7  样品A~C的Σ3 (<111>/60°)晶界的五参数晶界面分布图(投影在(001)内)
图8  Al-Zn-Mg-Cu合金包含{111}/{111}-NSB微区OIM像、{111}/{111}-NSB的{111}重叠极图晶界迹线分析和{111}/{111}-NSB离线原位表面侵蚀形貌特征
图9  Al-Zn-Mg-Cu合金{111}/{111}-NBS的HRTEM像和SAED花样
图10  样品A1~C1的OIM像
图11  样品A1~C1的取向差分布
图12  样品A1~E1的Vickers硬度
1 Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys [J]. Mater. Des., 2014, 56: 862
doi: 10.1016/j.matdes.2013.12.002
2 Georgantzia E, Gkantou M, Kamaris G S. Aluminium alloys as structural material: A review of research [J]. Eng. Struct., 2021, 227: 111372
doi: 10.1016/j.engstruct.2020.111372
3 Liu Y R, Pan Q L, Li H, et al. Revealing the evolution of microstructure, mechanical property and corrosion behavior of 7A46 aluminum alloy with different ageing treatment [J]. J. Alloys Compd., 2019, 792: 32
doi: 10.1016/j.jallcom.2019.03.324
4 Bai F, Gao W L, He Z L, et al. Effect of ageing processes on mechanical properties and intergranular corrosion of 7A85 aluminum alloy [J]. Chin. J. Nonferrous Met., 2016, 26: 957
4 柏 璠, 高文理, 何正林 等. 时效工艺对7A85铝合金力学和晶间腐蚀性能的影响 [J]. 中国有色金属学报, 2016, 26: 957
5 Li J H, Li F G, Ma X K, et al. Effect of grain boundary characteristic on intergranular corrosion and mechanical properties of severely sheared Al-Zn-Mg-Cu alloy [J]. Mater. Sci. Eng., 2018, A732: 53
6 Zhang Z, Deng Y L, Ye L Y, et al. Influence of aging treatments on the strength and localized corrosion resistance of aged Al-Zn-Mg-Cu alloy [J]. J. Alloys Compd., 2020, 846: 156223
doi: 10.1016/j.jallcom.2020.156223
7 Rao A C U, Vasu V, Govindaraju M, et al. Stress corrosion cracking behaviour of 7xxx aluminum alloys: A literature review [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 1447
doi: 10.1016/S1003-6326(16)64220-6
8 Xie P, Chen S Y, Chen K H, et al. Enhancing the stress corrosion cracking resistance of a low-Cu containing Al-Zn-Mg-Cu aluminum alloy by step-quench and aging heat treatment [J]. Corros. Sci., 2019, 161: 108184
doi: 10.1016/j.corsci.2019.108184
9 Marlaud T, Deschamps A, Bley F, et al. Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al-Zn-Mg-Cu alloy [J]. Acta Mater., 2010, 58: 4814
doi: 10.1016/j.actamat.2010.05.017
10 Wang W Y, Pan Q L, Wang X D, et al. Non-isothermal aging: A heat treatment method that simultaneously improves the mechanical properties and corrosion resistance of ultra-high strength Al-Zn-Mg-Cu alloy [J]. J. Alloys Compd., 2020, 845: 156286
doi: 10.1016/j.jallcom.2020.156286
11 Cai B, Adams B L, Nelson T W. Relation between precipitate-free zone width and grain boundary type in 7075-T7 Al alloy [J]. Acta Mater., 2007, 55: 1543
doi: 10.1016/j.actamat.2006.10.015
12 Martinez-Lombardia E, Lapeire L, Maurice V, et al. In situ scanning tunneling microscopy study of the intergranular corrosion of copper [J]. Electrochem. Commun., 2014, 41: 1
doi: 10.1016/j.elecom.2014.01.007
13 Aust K T. Grain boundary engineering [J]. Can. Metall. Quart., 1994, 33: 265
doi: 10.1179/cmq.1994.33.4.265
14 Du A H, Wang W G, Gu X F, et al. The dependence of precipitate morphology on the grain boundary types in an aged Al-Cu binary alloy [J]. J. Mater. Sci., 2021, 56: 781
doi: 10.1007/s10853-020-05239-5
15 Wang W G, Zhou B X, Rohrer G S, et al. Textures and grain boundary character distributions in a cold rolled and annealed Pb-Ca based alloy [J]. Mater. Sci. Eng., 2010, A527: 3695
16 Prithiv T S, Bhuyan P, Pradhan S K, et al. A critical evaluation on efficacy of recrystallization vs. strain induced boundary migration in achieving grain boundary engineered microstructure in a Ni-base superalloy [J]. Acta Mater., 2018, 146: 187
doi: 10.1016/j.actamat.2017.12.045
17 Liu Z Q, Wang W G. Study on Σ3 boundaries in an cold rolled and recrystallized Al-Cu alloy [J]. J. Chin. Electron Microsc. Soc., 2018, 37: 232
17 刘智强, 王卫国. 冷轧变形Al-Cu合金再结晶Σ3晶界研究 [J]. 电子显微学报, 2018, 37: 232
18 Fang H C, Chao H, Chen K H. Effect of Zr, Er and Cr additions on microstructures and properties of Al-Zn-Mg-Cu alloys [J]. Mater. Sci. Eng., 2014, A610: 10
19 Wang W G, Cai C H, Rohrer G S, et al. Grain boundary inter-connections in polycrystalline aluminum with random orientation [J]. Mater. Charact., 2018, 144: 411
doi: 10.1016/j.matchar.2018.07.040
20 Janssens K G F, Olmsted D, Holm E A, et al. Computing the mobility of grain boundaries [J]. Nat. Mater., 2006, 5: 124
pmid: 16400330
21 Ashrafizadeh S M, Eivani A R, Jafarian H R, et al. Improvement of mechanical properties of AA6063 aluminum alloy after equal channel angular pressing by applying a two-stage solution treatment [J]. Mater. Sci. Eng., 2017, A687: 54
22 Rohrer G S, Saylor D M, Dasher B E, et al. The Distribution of Internal Interfaces in Polycrystals [J]. Z. Metallkd., 2004, 95: 197
doi: 10.3139/146.017934
23 Wang W G, Du A H, Yang X M, et al. Quantitative determination of grain boundary inter-connections [P]. Chin Pat, 202011173146.8, 2021
23 王卫国, 杜阿华, 杨先明 等. 晶界界面匹配定量表征方法 [P]. 中国专利, 202011173146.8, 2021))
24 Yang X M, Wang W G, Gu X F. The near singular boundaries in BCC iron [J]. Philos. Mag., 2022, 102: 440
doi: 10.1080/14786435.2021.2004327
25 Wright S I, Larsen R J. Extracting twins from orientation imaging microscopy scan data [J]. J. Microsc., 2002, 205: 245
doi: 10.1046/j.1365-2818.2002.00992.x
26 Mackenzie J K. Second paper on statistics associated with the random disorientation of cubes [J]. Biometrika, 1958, 45: 229
doi: 10.1093/biomet/45.1-2.229
27 Xie B C, Zhang B Y, Ning Y Q, et al. Mechanisms of DRX nucleation with grain boundary bulging and subgrain rotation during the hot working of nickel-based superalloys with columnar grains [J]. J. Alloys Compd., 2019, 786: 636
doi: 10.1016/j.jallcom.2019.01.334
28 Yang Y, Zhou K, Li G J. Surface gradient microstructural characteristics and evolution mechanism of 2195 aluminum lithium alloy induced by laser shock peening [J]. Opt. Laser Technol., 2019, 109: 1
doi: 10.1016/j.optlastec.2018.07.041
29 Li J C M. Disclination model of high angle grain boundaries [J]. Surf. Sci., 1972, 31: 12
doi: 10.1016/0039-6028(72)90251-8
30 Klimanek P, Klemm V, Romanov A E, et al. Disclinations in plastically deformed metallic materials [J]. Adv. Eng. Mater., 2001, 3: 877
doi: 10.1002/1527-2648(200111)3:11&lt;877::AID-ADEM877&gt;3.0.CO;2-L
31 Zhao J H, Deng Y L, Tang J G. Grain refining with DDRX by isothermal MDF of Al-Zn-Mg-Cu alloy [J]. J. Mater. Res. Technol., 2020, 9: 8001
doi: 10.1016/j.jmrt.2020.05.033
32 Gao W L, Bai G R, Luan G F, et al. A criterion for dynamic recrystallization in metals' hot working [J]. J. Northeast Univ. Technol., 1993, 14: 49
32 高维林, 白光润, 栾瑰馥 等. 金属热变形中动态再结晶的临界判据 [J]. 东北工学院学报, 1993, 14: 49
33 Gao W L, Bai G R, Zhou Z M. An evolution model of dislocation patterns in plastic deformation and its applications [J]. Sci. China, 1995, 38A: 875
33 高维林, 白光润, 周志敏. 金属塑性变形中位错组态演化模型及其应用 [J]. 中国科学, 1994, 24A: 1225
[1] 韩宝帅, 魏立军, 徐严谨, 马晓光, 刘雅菲, 侯红亮. 预变形对超高强Al-Zn-Mg-Cu合金时效组织与力学性能的影响[J]. 金属学报, 2020, 56(7): 1007-1014.
[2] 冯迪, 张新明, 陈洪美, 金云学, 王国迎. 非等温回归再时效对Al-8Zn-2Mg-2Cu合金厚板组织及性能的影响[J]. 金属学报, 2018, 54(1): 100-108.
[3] 杨超,王继杰,马宗义,倪丁瑞,付明杰,李晓华,曾元松. 7B04铝合金薄板的搅拌摩擦焊接及接头低温超塑性研究*[J]. 金属学报, 2015, 51(12): 1449-1456.
[4] 张云崖 邓运来 万里 张新明. 形变热处理对Al-Zn-Mg-Cu合金板材组织与硬度的影响[J]. 金属学报, 2011, 47(10): 1270-1276.
[5] 王洪斌; 崔华; 郝斌; 程军胜; 黄进峰; 张济山 . 喷射沉积超高强Al-Zn-Mg-Cu合金的回归再时效处理[J]. 金属学报, 2005, 41(12): 1267-1271 .
[6] 杨滨; 程军胜; 樊建中; 田晓风; 陈汉宾; 张济山 . 低温球磨纳米晶Al-Zn-Mg-Cu合金组织的演变[J]. 金属学报, 2005, 41(11): 1195-1198 .
[7] 钱祥荣;周以苍;张东彬;马如璋. Nb双晶中晶界腐蚀与位向差的关系[J]. 金属学报, 1993, 29(2): 83-87.