|
|
不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界 |
王宗谱1, 王卫国1,2( ), Rohrer Gregory S3, 陈松1,2, 洪丽华1,2, 林燕1,2, 冯小铮1, 任帅1, 周邦新4 |
1福建工程学院 晶界工程研究所 福州 350118 2福建工程学院 材料科学与工程学院 福州 350118 3Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA15213 -3890, USA 4上海大学 材料研究所 上海 200072 |
|
{111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures |
WANG Zongpu1, WANG Weiguo1,2( ), Rohrer Gregory S3, CHEN Song1,2, HONG Lihua1,2, LIN Yan1,2, FENG Xiaozheng1, REN Shuai1, ZHOU Bangxin4 |
1Institute of Grain Boundary Engineering, Fujian University of Technology, Fuzhou 350118, China 2School of Materials Science and Technology, Fujian University of Technology, Fuzhou 350118, China 3Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA15213 -3890, USA 4Institute of Materials, Shanghai University, Shanghai 200072, China |
引用本文:
王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
Zongpu WANG,
Weiguo WANG,
Gregory S Rohrer,
Song CHEN,
Lihua HONG,
Yan LIN,
Xiaozheng FENG,
Shuai REN,
Bangxin ZHOU.
{111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. Acta Metall Sin, 2023, 59(7): 947-960.
1 |
Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys [J]. Mater. Des., 2014, 56: 862
doi: 10.1016/j.matdes.2013.12.002
|
2 |
Georgantzia E, Gkantou M, Kamaris G S. Aluminium alloys as structural material: A review of research [J]. Eng. Struct., 2021, 227: 111372
doi: 10.1016/j.engstruct.2020.111372
|
3 |
Liu Y R, Pan Q L, Li H, et al. Revealing the evolution of microstructure, mechanical property and corrosion behavior of 7A46 aluminum alloy with different ageing treatment [J]. J. Alloys Compd., 2019, 792: 32
doi: 10.1016/j.jallcom.2019.03.324
|
4 |
Bai F, Gao W L, He Z L, et al. Effect of ageing processes on mechanical properties and intergranular corrosion of 7A85 aluminum alloy [J]. Chin. J. Nonferrous Met., 2016, 26: 957
|
4 |
柏 璠, 高文理, 何正林 等. 时效工艺对7A85铝合金力学和晶间腐蚀性能的影响 [J]. 中国有色金属学报, 2016, 26: 957
|
5 |
Li J H, Li F G, Ma X K, et al. Effect of grain boundary characteristic on intergranular corrosion and mechanical properties of severely sheared Al-Zn-Mg-Cu alloy [J]. Mater. Sci. Eng., 2018, A732: 53
|
6 |
Zhang Z, Deng Y L, Ye L Y, et al. Influence of aging treatments on the strength and localized corrosion resistance of aged Al-Zn-Mg-Cu alloy [J]. J. Alloys Compd., 2020, 846: 156223
doi: 10.1016/j.jallcom.2020.156223
|
7 |
Rao A C U, Vasu V, Govindaraju M, et al. Stress corrosion cracking behaviour of 7xxx aluminum alloys: A literature review [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 1447
doi: 10.1016/S1003-6326(16)64220-6
|
8 |
Xie P, Chen S Y, Chen K H, et al. Enhancing the stress corrosion cracking resistance of a low-Cu containing Al-Zn-Mg-Cu aluminum alloy by step-quench and aging heat treatment [J]. Corros. Sci., 2019, 161: 108184
doi: 10.1016/j.corsci.2019.108184
|
9 |
Marlaud T, Deschamps A, Bley F, et al. Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al-Zn-Mg-Cu alloy [J]. Acta Mater., 2010, 58: 4814
doi: 10.1016/j.actamat.2010.05.017
|
10 |
Wang W Y, Pan Q L, Wang X D, et al. Non-isothermal aging: A heat treatment method that simultaneously improves the mechanical properties and corrosion resistance of ultra-high strength Al-Zn-Mg-Cu alloy [J]. J. Alloys Compd., 2020, 845: 156286
doi: 10.1016/j.jallcom.2020.156286
|
11 |
Cai B, Adams B L, Nelson T W. Relation between precipitate-free zone width and grain boundary type in 7075-T7 Al alloy [J]. Acta Mater., 2007, 55: 1543
doi: 10.1016/j.actamat.2006.10.015
|
12 |
Martinez-Lombardia E, Lapeire L, Maurice V, et al. In situ scanning tunneling microscopy study of the intergranular corrosion of copper [J]. Electrochem. Commun., 2014, 41: 1
doi: 10.1016/j.elecom.2014.01.007
|
13 |
Aust K T. Grain boundary engineering [J]. Can. Metall. Quart., 1994, 33: 265
doi: 10.1179/cmq.1994.33.4.265
|
14 |
Du A H, Wang W G, Gu X F, et al. The dependence of precipitate morphology on the grain boundary types in an aged Al-Cu binary alloy [J]. J. Mater. Sci., 2021, 56: 781
doi: 10.1007/s10853-020-05239-5
|
15 |
Wang W G, Zhou B X, Rohrer G S, et al. Textures and grain boundary character distributions in a cold rolled and annealed Pb-Ca based alloy [J]. Mater. Sci. Eng., 2010, A527: 3695
|
16 |
Prithiv T S, Bhuyan P, Pradhan S K, et al. A critical evaluation on efficacy of recrystallization vs. strain induced boundary migration in achieving grain boundary engineered microstructure in a Ni-base superalloy [J]. Acta Mater., 2018, 146: 187
doi: 10.1016/j.actamat.2017.12.045
|
17 |
Liu Z Q, Wang W G. Study on Σ3 boundaries in an cold rolled and recrystallized Al-Cu alloy [J]. J. Chin. Electron Microsc. Soc., 2018, 37: 232
|
17 |
刘智强, 王卫国. 冷轧变形Al-Cu合金再结晶Σ3晶界研究 [J]. 电子显微学报, 2018, 37: 232
|
18 |
Fang H C, Chao H, Chen K H. Effect of Zr, Er and Cr additions on microstructures and properties of Al-Zn-Mg-Cu alloys [J]. Mater. Sci. Eng., 2014, A610: 10
|
19 |
Wang W G, Cai C H, Rohrer G S, et al. Grain boundary inter-connections in polycrystalline aluminum with random orientation [J]. Mater. Charact., 2018, 144: 411
doi: 10.1016/j.matchar.2018.07.040
|
20 |
Janssens K G F, Olmsted D, Holm E A, et al. Computing the mobility of grain boundaries [J]. Nat. Mater., 2006, 5: 124
pmid: 16400330
|
21 |
Ashrafizadeh S M, Eivani A R, Jafarian H R, et al. Improvement of mechanical properties of AA6063 aluminum alloy after equal channel angular pressing by applying a two-stage solution treatment [J]. Mater. Sci. Eng., 2017, A687: 54
|
22 |
Rohrer G S, Saylor D M, Dasher B E, et al. The Distribution of Internal Interfaces in Polycrystals [J]. Z. Metallkd., 2004, 95: 197
doi: 10.3139/146.017934
|
23 |
Wang W G, Du A H, Yang X M, et al. Quantitative determination of grain boundary inter-connections [P]. Chin Pat, 202011173146.8, 2021
|
23 |
王卫国, 杜阿华, 杨先明 等. 晶界界面匹配定量表征方法 [P]. 中国专利, 202011173146.8, 2021))
|
24 |
Yang X M, Wang W G, Gu X F. The near singular boundaries in BCC iron [J]. Philos. Mag., 2022, 102: 440
doi: 10.1080/14786435.2021.2004327
|
25 |
Wright S I, Larsen R J. Extracting twins from orientation imaging microscopy scan data [J]. J. Microsc., 2002, 205: 245
doi: 10.1046/j.1365-2818.2002.00992.x
|
26 |
Mackenzie J K. Second paper on statistics associated with the random disorientation of cubes [J]. Biometrika, 1958, 45: 229
doi: 10.1093/biomet/45.1-2.229
|
27 |
Xie B C, Zhang B Y, Ning Y Q, et al. Mechanisms of DRX nucleation with grain boundary bulging and subgrain rotation during the hot working of nickel-based superalloys with columnar grains [J]. J. Alloys Compd., 2019, 786: 636
doi: 10.1016/j.jallcom.2019.01.334
|
28 |
Yang Y, Zhou K, Li G J. Surface gradient microstructural characteristics and evolution mechanism of 2195 aluminum lithium alloy induced by laser shock peening [J]. Opt. Laser Technol., 2019, 109: 1
doi: 10.1016/j.optlastec.2018.07.041
|
29 |
Li J C M. Disclination model of high angle grain boundaries [J]. Surf. Sci., 1972, 31: 12
doi: 10.1016/0039-6028(72)90251-8
|
30 |
Klimanek P, Klemm V, Romanov A E, et al. Disclinations in plastically deformed metallic materials [J]. Adv. Eng. Mater., 2001, 3: 877
doi: 10.1002/1527-2648(200111)3:11<877::AID-ADEM877>3.0.CO;2-L
|
31 |
Zhao J H, Deng Y L, Tang J G. Grain refining with DDRX by isothermal MDF of Al-Zn-Mg-Cu alloy [J]. J. Mater. Res. Technol., 2020, 9: 8001
doi: 10.1016/j.jmrt.2020.05.033
|
32 |
Gao W L, Bai G R, Luan G F, et al. A criterion for dynamic recrystallization in metals' hot working [J]. J. Northeast Univ. Technol., 1993, 14: 49
|
32 |
高维林, 白光润, 栾瑰馥 等. 金属热变形中动态再结晶的临界判据 [J]. 东北工学院学报, 1993, 14: 49
|
33 |
Gao W L, Bai G R, Zhou Z M. An evolution model of dislocation patterns in plastic deformation and its applications [J]. Sci. China, 1995, 38A: 875
|
33 |
高维林, 白光润, 周志敏. 金属塑性变形中位错组态演化模型及其应用 [J]. 中国科学, 1994, 24A: 1225
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|