|
|
以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升 |
王京阳( ), 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁 |
中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 |
|
Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion |
WANG Jingyang( ), SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie |
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
Jingyang WANG,
Luchao SUN,
Yixiu LUO,
Zhilin TIAN,
Xiaomin REN,
Jie ZHANG.
Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. Acta Metall Sin, 2023, 59(4): 523-536.
1 |
Padture N P. Advanced structural ceramics in aerospace propulsion [J]. Nat. Mater., 2016, 15: 804
doi: 10.1038/nmat4687
pmid: 27443899
|
2 |
Williams J C, Starke Jr E A. Progress in structural materials for aerospace systems [J]. Acta Mater., 2003, 51: 5775
doi: 10.1016/j.actamat.2003.08.023
|
3 |
Lee K N, Fox D S, Bansal N P. Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics [J]. J. Eur. Ceram. Soc., 2005, 25: 1705
doi: 10.1016/j.jeurceramsoc.2004.12.013
|
4 |
Tejero-Martin D, Bennett C, Hussain T. A review on environmental barrier coatings: History, current state of the art and future developments [J]. J. Eur. Ceram. Soc., 2021, 41: 1747
doi: 10.1016/j.jeurceramsoc.2020.10.057
|
5 |
Zhu D M. Advanced environmental barrier coatings for SiC/SiC ceramic matrix composite turbine components [A]. Engineered Ceramics: Current Status and Future Prospects [M]. New Jersey: John Wiley & Sons, Inc., 2016: 187
|
6 |
Felsche J. The crystal chemistry of the rare-earth silicates [A]. Structure and Bonding 13 [M]. Heidelberg: Springer Berlin, 1973: 99
|
7 |
Tian Z L, Wang J Y. Research progress of rare earth silicate ceramics [J]. Adv. Ceram., 2018, 39: 295
|
7 |
田志林, 王京阳. 稀土硅酸盐陶瓷材料研究进展 [J]. 现代技术陶瓷, 2018, 39: 295
|
8 |
Luo Y X, Wang J Y. Thermal properties of rare-earth disilicates: Material genome and coordinated mechanism [J]. Mater. China, 2019, 38: 866
|
8 |
罗颐秀, 王京阳. 稀土双硅酸盐热学性能的基因与协调机制 [J]. 中国材料进展, 2019, 38: 866
|
9 |
Klemm H. Silicon nitride for high-temperature applications [J]. J. Am. Ceram. Soc., 2010, 93: 1501
doi: 10.1111/jace.2010.93.issue-6
|
10 |
Poerschke D L, Jackson R W, Levi C G. Silicate deposit degradation of engineered coatings in gas turbines: Progress toward models and materials solutions [J]. Annu. Rev. Mater. Res., 2017, 47: 297
doi: 10.1146/matsci.2017.47.issue-1
|
11 |
Grant K M, Krämer S, Löfvander J P A, et al. CMAS degradation of environmental barrier coatings [J]. Surf. Coat. Technol., 2007, 202: 653
doi: 10.1016/j.surfcoat.2007.06.045
|
12 |
Levi C G, Hutchinson J W, Vidal-Sétif M H, et al. Environmental degradation of thermal-barrier coatings by molten deposits [J]. MRS Bull., 2012, 37: 932
doi: 10.1557/mrs.2012.230
|
13 |
Nieto A, Agrawal R, Bravo L, et al. Calcia-magnesia-alumina-silicate (CMAS) attack mechanisms and roadmap towards sandphobic thermal and environmental barrier coatings [J]. Int. Mater. Rev., 2021, 66: 451
doi: 10.1080/09506608.2020.1824414
|
14 |
Smialek J L, Archer F A, Garlick R G. The chemistry of Saudi Arabian sand: A deposition problem on helicopter turbine airfoils [A]. Advances in Synthesis and Processes [C]. Covina: SAMPE, 1992: 20
|
15 |
Wolf M, Mack D E, Guillon O, et al. Resistance of pure and mixed rare earth silicates against calcium-magnesium-aluminosilicate (CMAS): A comparative study [J]. J. Am. Ceram. Soc., 2020, 103: 7056
doi: 10.1111/jace.v103.12
|
16 |
Stokes J L, Harder B J, Wiesner V L, et al. Effects of crystal structure and cation size on molten silicate reactivity with environmental barrier coating materials [J]. J. Am. Ceram. Soc., 2020, 103: 622
doi: 10.1111/jace.v103.1
|
17 |
Jiang F R, Cheng L F, Wang Y G. Hot corrosion of RE2SiO5 with different cation substitution under calcium-magnesium-aluminosilicate attack [J]. Ceram. Int., 2017, 43: 9019
doi: 10.1016/j.ceramint.2017.04.045
|
18 |
Webster R I, Opila E J. Mixed phase ytterbium silicate environmental-barrier coating materials for improved calcium-magnesium-alumino-silicate resistance [J]. J. Mater. Res., 2020, 35: 2358
doi: 10.1557/jmr.2020.151
|
19 |
Poerschke D L, Shaw J H, Verma N, et al. Interaction of yttrium disilicate environmental barrier coatings with calcium-magnesium-iron alumino-silicate melts [J]. Acta Mater., 2018, 145: 451
doi: 10.1016/j.actamat.2017.12.004
|
20 |
Wiesner V L, Harder B J, Garg A, et al. Molten calcium-magnesium-aluminosilicate interactions with ytterbium disilicate environmental barrier coating [J]. J. Mater. Res., 2020, 35: 2346
doi: 10.1557/jmr.2020.211
|
21 |
Tian Z L, Zhang J, Zheng L Y, et al. General trend on the phase stability and corrosion resistance of rare earth monosilicates to molten calcium-magnesium-aluminosilicate at 1300oC [J]. Corros. Sci., 2019, 148: 281
doi: 10.1016/j.corsci.2018.12.032
|
22 |
Tian Z L, Zhang J, Zhang T Y, et al. Towards thermal barrier coating application for rare earth silicates RE2SiO5 (RE = La, Nd, Sm, Eu, and Gd) [J]. J. Eur. Ceram. Soc., 2019, 39: 1463
doi: 10.1016/j.jeurceramsoc.2018.12.015
|
23 |
Tian Z L, Ren X M, Lei Y M, et al. Corrosion of RE2Si2O7 (RE = Y, Yb, and Lu) environmental barrier coating materials by molten calcium-magnesium-alumino-silicate glass at high temperatures [J]. J. Eur. Ceram. Soc., 2019, 39: 4245
doi: 10.1016/j.jeurceramsoc.2019.05.036
|
24 |
Poerschke D L, Barth T L, Fabrichnaya O, et al. Phase equilibria and crystal chemistry in the calcia-silica-yttria system [J]. J. Eur. Ceram. Soc., 2016, 36: 1743
doi: 10.1016/j.jeurceramsoc.2016.01.046
|
25 |
Turcer L R, Padture N P. Towards multifunctional thermal environmental barrier coatings (TEBCs) based on rare-earth pyrosilicate solid-solution ceramics [J]. Scr. Mater., 2018, 154: 111
doi: 10.1016/j.scriptamat.2018.05.032
|
26 |
Rost C M, Sachet E, Borman T, et al. Entropy-stabilized oxides [J]. Nat. Commun., 2015, 6: 8485
doi: 10.1038/ncomms9485
pmid: 26415623
|
27 |
Xiang H M, Xing Y, Dai F Z, et al. High-entropy ceramics: Present status, challenges, and a look forward [J]. J. Adv. Ceram., 2021, 10: 385
doi: 10.1007/s40145-021-0477-y
|
28 |
Sun L C, Luo Y X, Ren X M, et al. A multicomponent γ-type (Gd1/6Tb1/6Dy1/6Tm1/6Yb1/6Lu1/6)2Si2O7 disilicate with outstanding thermal stability [J]. Mater. Res. Lett., 2020, 8: 424
doi: 10.1080/21663831.2020.1783007
|
29 |
Gild J, Zhang Y Y, Harrington T, et al. High-entropy metal diborides: A new class of high-entropy materials and a new type of ultrahigh temperature ceramics [J]. Sci. Rep., 2016, 6: 37946
doi: 10.1038/srep37946
pmid: 27897255
|
30 |
Sarker P, Harrington T, Toher C, et al. High-entropy high-hardness metal carbides discovered by entropy descriptors [J]. Nat. Commun., 2018, 9: 4980
doi: 10.1038/s41467-018-07160-7
pmid: 30478375
|
31 |
Jin T, Sang X H, Unocic R R, et al. Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy [J]. Adv. Mater., 2018, 30: 1707512
doi: 10.1002/adma.v30.23
|
32 |
Zhang R Z, Gucci Z, Zhu H Y, et al. Data-driven design of ecofriendly thermoelectric high-entropy sulfides [J]. Inorg. Chem., 2018, 57: 13027
doi: 10.1021/acs.inorgchem.8b02379
|
33 |
Gild J, Braun J, Kaufmann K, et al. A high-entropy silicide: (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2 [J]. J. Materiomics, 2019, 5: 337
doi: 10.1016/j.jmat.2019.03.002
|
34 |
Sarkar A, Breitung B, Hahn H. High entropy oxides: The role of entropy, enthalpy and synergy [J]. Scr. Mater., 2020, 187: 43
doi: 10.1016/j.scriptamat.2020.05.019
|
35 |
Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: Challenges and prospects [J]. Mater. Today, 2016, 19: 349
doi: 10.1016/j.mattod.2015.11.026
|
36 |
Dong Y, Ren K, Lu Y H, et al. High-entropy environmental barrier coating for the ceramic matrix composites [J]. J. Eur. Ceram. Soc., 2019, 39: 2574
doi: 10.1016/j.jeurceramsoc.2019.02.022
|
37 |
Fan D, Zhong X, Zhang Z Z, et al. Interaction of high-entropy rare-earth monosilicate environmental barrier coatings subjected to corrosion by calcium-magnesium-alumino-silicate melts [J]. Corros. Sci., 2022, 207: 110564
doi: 10.1016/j.corsci.2022.110564
|
38 |
Wang X, Cheng M H, Xiao G Z, et al. Preparation and corrosion resistance of high-entropy disilicate (Y0.25Yb0.25Er0.25Sc0.25)2Si2O7 ceramics [J]. Corros. Sci., 2021, 192: 109786
doi: 10.1016/j.corsci.2021.109786
|
39 |
Chen Z L, Tian Z L, Zheng L Y, et al. (Ho0.25Lu0.25Yb0.25Eu0.25)2SiO5 high-entropy ceramic with low thermal conductivity, tunable thermal expansion coefficient, and excellent resistance to CMAS corrosion [J]. J. Adv. Ceram., 2022, 11: 1279
doi: 10.1007/s40145-022-0609-z
|
40 |
Chen Z Y, Lin C C, Zheng W, et al. Investigation on improving corrosion resistance of rare earth pyrosilicates by high-entropy design with RE-doping [J]. Corros. Sci., 2022, 199: 110217
doi: 10.1016/j.corsci.2022.110217
|
41 |
Ren X M, Tian Z L, Zhang J, et al. Equiatomic quaternary (Y1/4Ho1/4Er1/4Yb1/4)2SiO5 silicate: A perspective multifunctional thermal and environmental barrier coating material [J]. Scr. Mater., 2019, 168: 47
doi: 10.1016/j.scriptamat.2019.04.018
|
42 |
Ren X M. Design, processing and properties of high entropy rare earth monosilicates as thermal and environment barrier coating materials [D]. Hefei: University of Science and Technology of China (Institute of Metal Research, Chinese Academy of Sciences), 2022
|
42 |
任孝旻. 高熵稀土单硅酸盐热障/环境障涂层材料的设计、制备和性能研究 [D]. 合肥: 中国科学技术大学 (中国科学院金属研究所), 2022
|
43 |
Ren X M, Zhang J, Wang J Y. Composition effects on elastic, thermal and corrosion properties of multiple-RE silicate (Ho1/4Er1/4Yb1/4-Lu1/4)2SiO5 as a promising thermal and environmental barrier coating material [J]. J. Eur. Ceram. Soc., 2022, 42: 7258
doi: 10.1016/j.jeurceramsoc.2022.08.034
|
44 |
Sun L C, Luo Y X, Tian Z L, et al. High temperature corrosion of (Er0.25Tm0.25Yb0.25Lu0.25)2Si2O7 environmental barrier coating material subjected to water vapor and molten calcium-magnesium-aluminosilicate (CMAS) [J]. Corros. Sci., 2020, 175: 108881
doi: 10.1016/j.corsci.2020.108881
|
45 |
Sun L C, Ren X M, Luo Y X, et al. Exploration of the mechanism of enhanced CMAS corrosion resistance at 1500oC for multicomponent (Er0.25Tm0.25Yb0.25Lu0.25)2Si2O7 disilicate [J]. Corros. Sci., 2022, 203: 110343
doi: 10.1016/j.corsci.2022.110343
|
46 |
Sun L C, Ren X M, Du T F, et al. High entropy engineering: New strategy for the critical property optimizations of rare earth silicates [J]. J. Inorg. Mater., 2021, 36: 339
doi: 10.15541/jim20200611
|
46 |
孙鲁超, 任孝旻, 杜铁锋 等. 高熵化设计: 稀土硅酸盐材料关键性能优化新策略 [J]. 无机材料学报, 2021, 36: 339
doi: 10.15541/jim20200611
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|