Please wait a minute...
金属学报  2023, Vol. 59 Issue (4): 523-536    DOI: 10.11900/0412.1961.2022.00556
  综述 本期目录 | 过刊浏览 |
以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升
王京阳(), 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁
中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion
WANG Jingyang(), SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
Jingyang WANG, Luchao SUN, Yixiu LUO, Zhilin TIAN, Xiaomin REN, Jie ZHANG. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. Acta Metall Sin, 2023, 59(4): 523-536.

全文: PDF(3844 KB)   HTML
摘要: 

环境障涂层是大推力和高推重比航空发动机的关键材料,能够为碳化硅纤维增强碳化硅(SiCf/SiC)陶瓷基复合材料热端部件提供有效防护,阻挡燃气及环境腐蚀介质的侵蚀。稀土硅酸盐具有与SiC基复合材料匹配的热膨胀系数以及良好的化学相容性,是目前国际公认的优选环境障涂层体系。然而,目前已知稀土硅酸盐材料耐典型低熔点氧化物CaO-MgO-Al2O3-SiO2 (CMAS)腐蚀性能不足,难以满足新一代航空发动机1300℃及以上温度的工程应用需求。本文总结了近年来稀土硅酸盐耐CMAS腐蚀相关研究进展,重点介绍了本团队关于单一稀土主元单/双硅酸盐CMAS腐蚀机理的研究成果,以此为基础提出高熵化设计思路,旨在充分利用不同稀土元素在与CMAS反应过程中呈现的特性差异,通过合理设计多稀土主元搭配实现稀土硅酸盐材料耐CMAS腐蚀性能提升。最后对高熵稀土硅酸盐环境障涂层的发展方向进行了展望。

关键词 环境障涂层稀土硅酸盐高熵陶瓷CMAS腐蚀    
Abstract

High thrust-to-weight ratios and high propulsion are necessary requirements for revolutionizing the aviation technology. Emerging hot-section engine components are currently focused on SiCf/SiC ceramic matrix composite materials, wherein the environmental barrier coatings (EBCs) are needed to protect the engine components from the harsh combustion environment. Due to their matched thermal expansion coefficient and good chemical compatibility with the SiCf/SiC ceramic matrix composites substrates, rare earth (RE) silicates have been identified as promising EBC materials. However, they cannot provide reliable protection for the engine components when the working temperature rises over 1300oC, mainly because of their poor resistance to the low melting point oxides CaO-MgO-Al2O3-SiO2 (CMAS) melts. This review discusses the current state of research on the CMAS corrosion resistance of RE silicates. First, the interaction and degradation mechanisms of single-RE-component RE2SiO5 and RE2Si2O7 are discussed, and the different roles of RE species in reacting with CMAS melts are summarized. Then, the concept of high-entropy design is introduced, enabling synergistic optimization of the effects of multiple RE species in terms of CMAS resistance, by delicately designing the multi-RE-component (nRE x ) compositions. Such a strategy leads to enhanced CMAS corrosion resistance in some novel (nRE x )2SiO5 and (nRE x )2Si2O7 materials. Finally, potential prospects, opportunities, and challenges for high-entropy RE silicates as EBC materials are discussed.

Key wordsenvironmental barrier coating    rare earth silicate    high-entropy ceramic    CMAS corrosion
收稿日期: 2022-11-01     
ZTFLH:  TB32  
基金资助:国家自然科学基金项目(U21A2063);国家自然科学基金项目(52002376);国家重点研发计划项目(2021YFB3702300);国家科技重大专项项目(2017-VI-0020-0093);中国科学院重点部署项目(ZDRW-CN-2021-2-2);辽宁省“兴辽英才计划”项目(XLYC200-2018)
通讯作者: 王京阳,jywang@imr.ac.cn,主要从事极端环境用陶瓷及复合材料研究
Corresponding author: WANG Jingyang, professor, Tel: (024)23971762, E-mail: jywang@imr.ac.cn
作者简介: 王京阳,男,1971年生,研究员,博士
图1  Tb2SiO5、Er2SiO5和Tm2SiO5在1300℃低熔点氧化物CaO-MgO-Al2O3-SiO2 (CMAS)腐蚀50 h之后的截面形貌、反应区局部形貌和截面EDS面扫描的元素分布,以及表面形貌和XRD谱[21]
图2  3类稀土单硅酸盐(RE2SiO5) 1300℃ CMAS腐蚀50 h反应示意图[21]
图3  (Y1/4Ho1/4Er1/4Yb1/4)2SiO5的TEM明场像、原子分辨率[010]方向的高角环形暗场(HAADF)像及对应的Fourier变换衍射图、模拟的X2-RE2SiO5 [010]晶带轴方向的结构示意图及对应的元素分布EDS扫描图[42]
图4  四元(4RE1/4)2SiO5在1300℃下CMAS腐蚀50 h后样品表面XRD谱、腐蚀后样品表面形貌、腐蚀后样品截面残余CMAS析出空心棒状磷灰石形貌以及腐蚀后样品截面反应析出层放大图[42]

Element

(Y1/4Ho1/4Er1/4Yb1/4)2SiO5(Ho1/4Er1/4Yb1/4Lu1/4)2SiO5
Reaction precipitation layerCooling precipitation layerReaction precipitation layerCooling precipitation layer
Y4.32 ± 0.316.19 ± 0.45--
Ho3.80 ± 0.295.85 ± 0.473.90 ± 0.316.48 ± 0.54
Er3.65 ± 0.295.73 ± 0.493.66 ± 0.346.14 ± 0.55
Yb3.00 ± 0.254.77 ± 0.423.07 ± 0.275.17 ± 0.47
Lu--2.74 ± 0.314.62 ± 0.54
Ca3.97 ± 0.277.19 ± 0.483.95 ± 0.287.53 ± 0.53
RE∶Ca3.723.133.342.98
表1  (4RE1/4)2SiO5在1500℃下CMAS腐蚀4 h后反应析出层和冷却析出层的磷灰石相中稀土元素RE与Ca的EDS定量分析结果[41] (atomic fraction / %)
图5  高熵稀土双硅酸盐(Er0.25Tm0.25Yb0.25Lu0.25)2Si2O7经1500℃ CMAS腐蚀反应4和50 h后样品截面的电子探针元素分析,以及单稀土主元双硅酸盐Yb2Si2O7和Lu2Si2O7经1500℃ CMAS腐蚀25 h后截面形貌[45]
图6  高熵稀土双硅酸盐(Er0.25Tm0.25Yb0.25Lu0.25)2Si2O7 1500℃ CMAS腐蚀机制示意图[45]
1 Padture N P. Advanced structural ceramics in aerospace propulsion [J]. Nat. Mater., 2016, 15: 804
doi: 10.1038/nmat4687 pmid: 27443899
2 Williams J C, Starke Jr E A. Progress in structural materials for aerospace systems [J]. Acta Mater., 2003, 51: 5775
doi: 10.1016/j.actamat.2003.08.023
3 Lee K N, Fox D S, Bansal N P. Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics [J]. J. Eur. Ceram. Soc., 2005, 25: 1705
doi: 10.1016/j.jeurceramsoc.2004.12.013
4 Tejero-Martin D, Bennett C, Hussain T. A review on environmental barrier coatings: History, current state of the art and future developments [J]. J. Eur. Ceram. Soc., 2021, 41: 1747
doi: 10.1016/j.jeurceramsoc.2020.10.057
5 Zhu D M. Advanced environmental barrier coatings for SiC/SiC ceramic matrix composite turbine components [A]. Engineered Ceramics: Current Status and Future Prospects [M]. New Jersey: John Wiley & Sons, Inc., 2016: 187
6 Felsche J. The crystal chemistry of the rare-earth silicates [A]. Structure and Bonding 13 [M]. Heidelberg: Springer Berlin, 1973: 99
7 Tian Z L, Wang J Y. Research progress of rare earth silicate ceramics [J]. Adv. Ceram., 2018, 39: 295
7 田志林, 王京阳. 稀土硅酸盐陶瓷材料研究进展 [J]. 现代技术陶瓷, 2018, 39: 295
8 Luo Y X, Wang J Y. Thermal properties of rare-earth disilicates: Material genome and coordinated mechanism [J]. Mater. China, 2019, 38: 866
8 罗颐秀, 王京阳. 稀土双硅酸盐热学性能的基因与协调机制 [J]. 中国材料进展, 2019, 38: 866
9 Klemm H. Silicon nitride for high-temperature applications [J]. J. Am. Ceram. Soc., 2010, 93: 1501
doi: 10.1111/jace.2010.93.issue-6
10 Poerschke D L, Jackson R W, Levi C G. Silicate deposit degradation of engineered coatings in gas turbines: Progress toward models and materials solutions [J]. Annu. Rev. Mater. Res., 2017, 47: 297
doi: 10.1146/matsci.2017.47.issue-1
11 Grant K M, Krämer S, Löfvander J P A, et al. CMAS degradation of environmental barrier coatings [J]. Surf. Coat. Technol., 2007, 202: 653
doi: 10.1016/j.surfcoat.2007.06.045
12 Levi C G, Hutchinson J W, Vidal-Sétif M H, et al. Environmental degradation of thermal-barrier coatings by molten deposits [J]. MRS Bull., 2012, 37: 932
doi: 10.1557/mrs.2012.230
13 Nieto A, Agrawal R, Bravo L, et al. Calcia-magnesia-alumina-silicate (CMAS) attack mechanisms and roadmap towards sandphobic thermal and environmental barrier coatings [J]. Int. Mater. Rev., 2021, 66: 451
doi: 10.1080/09506608.2020.1824414
14 Smialek J L, Archer F A, Garlick R G. The chemistry of Saudi Arabian sand: A deposition problem on helicopter turbine airfoils [A]. Advances in Synthesis and Processes [C]. Covina: SAMPE, 1992: 20
15 Wolf M, Mack D E, Guillon O, et al. Resistance of pure and mixed rare earth silicates against calcium-magnesium-aluminosilicate (CMAS): A comparative study [J]. J. Am. Ceram. Soc., 2020, 103: 7056
doi: 10.1111/jace.v103.12
16 Stokes J L, Harder B J, Wiesner V L, et al. Effects of crystal structure and cation size on molten silicate reactivity with environmental barrier coating materials [J]. J. Am. Ceram. Soc., 2020, 103: 622
doi: 10.1111/jace.v103.1
17 Jiang F R, Cheng L F, Wang Y G. Hot corrosion of RE2SiO5 with different cation substitution under calcium-magnesium-aluminosilicate attack [J]. Ceram. Int., 2017, 43: 9019
doi: 10.1016/j.ceramint.2017.04.045
18 Webster R I, Opila E J. Mixed phase ytterbium silicate environmental-barrier coating materials for improved calcium-magnesium-alumino-silicate resistance [J]. J. Mater. Res., 2020, 35: 2358
doi: 10.1557/jmr.2020.151
19 Poerschke D L, Shaw J H, Verma N, et al. Interaction of yttrium disilicate environmental barrier coatings with calcium-magnesium-iron alumino-silicate melts [J]. Acta Mater., 2018, 145: 451
doi: 10.1016/j.actamat.2017.12.004
20 Wiesner V L, Harder B J, Garg A, et al. Molten calcium-magnesium-aluminosilicate interactions with ytterbium disilicate environmental barrier coating [J]. J. Mater. Res., 2020, 35: 2346
doi: 10.1557/jmr.2020.211
21 Tian Z L, Zhang J, Zheng L Y, et al. General trend on the phase stability and corrosion resistance of rare earth monosilicates to molten calcium-magnesium-aluminosilicate at 1300oC [J]. Corros. Sci., 2019, 148: 281
doi: 10.1016/j.corsci.2018.12.032
22 Tian Z L, Zhang J, Zhang T Y, et al. Towards thermal barrier coating application for rare earth silicates RE2SiO5 (RE = La, Nd, Sm, Eu, and Gd) [J]. J. Eur. Ceram. Soc., 2019, 39: 1463
doi: 10.1016/j.jeurceramsoc.2018.12.015
23 Tian Z L, Ren X M, Lei Y M, et al. Corrosion of RE2Si2O7 (RE = Y, Yb, and Lu) environmental barrier coating materials by molten calcium-magnesium-alumino-silicate glass at high temperatures [J]. J. Eur. Ceram. Soc., 2019, 39: 4245
doi: 10.1016/j.jeurceramsoc.2019.05.036
24 Poerschke D L, Barth T L, Fabrichnaya O, et al. Phase equilibria and crystal chemistry in the calcia-silica-yttria system [J]. J. Eur. Ceram. Soc., 2016, 36: 1743
doi: 10.1016/j.jeurceramsoc.2016.01.046
25 Turcer L R, Padture N P. Towards multifunctional thermal environmental barrier coatings (TEBCs) based on rare-earth pyrosilicate solid-solution ceramics [J]. Scr. Mater., 2018, 154: 111
doi: 10.1016/j.scriptamat.2018.05.032
26 Rost C M, Sachet E, Borman T, et al. Entropy-stabilized oxides [J]. Nat. Commun., 2015, 6: 8485
doi: 10.1038/ncomms9485 pmid: 26415623
27 Xiang H M, Xing Y, Dai F Z, et al. High-entropy ceramics: Present status, challenges, and a look forward [J]. J. Adv. Ceram., 2021, 10: 385
doi: 10.1007/s40145-021-0477-y
28 Sun L C, Luo Y X, Ren X M, et al. A multicomponent γ-type (Gd1/6Tb1/6Dy1/6Tm1/6Yb1/6Lu1/6)2Si2O7 disilicate with outstanding thermal stability [J]. Mater. Res. Lett., 2020, 8: 424
doi: 10.1080/21663831.2020.1783007
29 Gild J, Zhang Y Y, Harrington T, et al. High-entropy metal diborides: A new class of high-entropy materials and a new type of ultrahigh temperature ceramics [J]. Sci. Rep., 2016, 6: 37946
doi: 10.1038/srep37946 pmid: 27897255
30 Sarker P, Harrington T, Toher C, et al. High-entropy high-hardness metal carbides discovered by entropy descriptors [J]. Nat. Commun., 2018, 9: 4980
doi: 10.1038/s41467-018-07160-7 pmid: 30478375
31 Jin T, Sang X H, Unocic R R, et al. Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy [J]. Adv. Mater., 2018, 30: 1707512
doi: 10.1002/adma.v30.23
32 Zhang R Z, Gucci Z, Zhu H Y, et al. Data-driven design of ecofriendly thermoelectric high-entropy sulfides [J]. Inorg. Chem., 2018, 57: 13027
doi: 10.1021/acs.inorgchem.8b02379
33 Gild J, Braun J, Kaufmann K, et al. A high-entropy silicide: (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2 [J]. J. Materiomics, 2019, 5: 337
doi: 10.1016/j.jmat.2019.03.002
34 Sarkar A, Breitung B, Hahn H. High entropy oxides: The role of entropy, enthalpy and synergy [J]. Scr. Mater., 2020, 187: 43
doi: 10.1016/j.scriptamat.2020.05.019
35 Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: Challenges and prospects [J]. Mater. Today, 2016, 19: 349
doi: 10.1016/j.mattod.2015.11.026
36 Dong Y, Ren K, Lu Y H, et al. High-entropy environmental barrier coating for the ceramic matrix composites [J]. J. Eur. Ceram. Soc., 2019, 39: 2574
doi: 10.1016/j.jeurceramsoc.2019.02.022
37 Fan D, Zhong X, Zhang Z Z, et al. Interaction of high-entropy rare-earth monosilicate environmental barrier coatings subjected to corrosion by calcium-magnesium-alumino-silicate melts [J]. Corros. Sci., 2022, 207: 110564
doi: 10.1016/j.corsci.2022.110564
38 Wang X, Cheng M H, Xiao G Z, et al. Preparation and corrosion resistance of high-entropy disilicate (Y0.25Yb0.25Er0.25Sc0.25)2Si2O7 ceramics [J]. Corros. Sci., 2021, 192: 109786
doi: 10.1016/j.corsci.2021.109786
39 Chen Z L, Tian Z L, Zheng L Y, et al. (Ho0.25Lu0.25Yb0.25Eu0.25)2SiO5 high-entropy ceramic with low thermal conductivity, tunable thermal expansion coefficient, and excellent resistance to CMAS corrosion [J]. J. Adv. Ceram., 2022, 11: 1279
doi: 10.1007/s40145-022-0609-z
40 Chen Z Y, Lin C C, Zheng W, et al. Investigation on improving corrosion resistance of rare earth pyrosilicates by high-entropy design with RE-doping [J]. Corros. Sci., 2022, 199: 110217
doi: 10.1016/j.corsci.2022.110217
41 Ren X M, Tian Z L, Zhang J, et al. Equiatomic quaternary (Y1/4Ho1/4Er1/4Yb1/4)2SiO5 silicate: A perspective multifunctional thermal and environmental barrier coating material [J]. Scr. Mater., 2019, 168: 47
doi: 10.1016/j.scriptamat.2019.04.018
42 Ren X M. Design, processing and properties of high entropy rare earth monosilicates as thermal and environment barrier coating materials [D]. Hefei: University of Science and Technology of China (Institute of Metal Research, Chinese Academy of Sciences), 2022
42 任孝旻. 高熵稀土单硅酸盐热障/环境障涂层材料的设计、制备和性能研究 [D]. 合肥: 中国科学技术大学 (中国科学院金属研究所), 2022
43 Ren X M, Zhang J, Wang J Y. Composition effects on elastic, thermal and corrosion properties of multiple-RE silicate (Ho1/4Er1/4Yb1/4-Lu1/4)2SiO5 as a promising thermal and environmental barrier coating material [J]. J. Eur. Ceram. Soc., 2022, 42: 7258
doi: 10.1016/j.jeurceramsoc.2022.08.034
44 Sun L C, Luo Y X, Tian Z L, et al. High temperature corrosion of (Er0.25Tm0.25Yb0.25Lu0.25)2Si2O7 environmental barrier coating material subjected to water vapor and molten calcium-magnesium-aluminosilicate (CMAS) [J]. Corros. Sci., 2020, 175: 108881
doi: 10.1016/j.corsci.2020.108881
45 Sun L C, Ren X M, Luo Y X, et al. Exploration of the mechanism of enhanced CMAS corrosion resistance at 1500oC for multicomponent (Er0.25Tm0.25Yb0.25Lu0.25)2Si2O7 disilicate [J]. Corros. Sci., 2022, 203: 110343
doi: 10.1016/j.corsci.2022.110343
46 Sun L C, Ren X M, Du T F, et al. High entropy engineering: New strategy for the critical property optimizations of rare earth silicates [J]. J. Inorg. Mater., 2021, 36: 339
doi: 10.15541/jim20200611
46 孙鲁超, 任孝旻, 杜铁锋 等. 高熵化设计: 稀土硅酸盐材料关键性能优化新策略 [J]. 无机材料学报, 2021, 36: 339
doi: 10.15541/jim20200611
[1] 郭磊, 高远, 叶福兴, 张馨木. 航空发动机热障涂层的CMAS腐蚀行为与防护方法[J]. 金属学报, 2021, 57(9): 1184-1198.