Please wait a minute...
金属学报  2020, Vol. 56 Issue (4): 429-443    DOI: 10.11900/0412.1961.2020.00003
  综述 本期目录 | 过刊浏览 |
热冲压成形钢的强度与塑性及断裂应变
易红亮1,2(),常智渊1,才贺龙1,杜鹏举1,杨达朋1
1.东北大学轧制技术及连轧自动化国家重点实验室 沈阳 110819
2.育材堂(苏州)材料科技有限公司 苏州 215123
Strength, Ductility and Fracture Strain ofPress-Hardening Steels
YI Hongliang1,2(),CHANG Zhiyuan1,CAI Helong1,DU Pengju1,YANG Dapeng1
1.State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
2.Easyforming Materials Technology Co. , Ltd. , Suzhou 215123, China
引用本文:

易红亮,常智渊,才贺龙,杜鹏举,杨达朋. 热冲压成形钢的强度与塑性及断裂应变[J]. 金属学报, 2020, 56(4): 429-443.
Hongliang YI, Zhiyuan CHANG, Helong CAI, Pengju DU, Dapeng YANG. Strength, Ductility and Fracture Strain ofPress-Hardening Steels[J]. Acta Metall Sin, 2020, 56(4): 429-443.

全文: PDF(21659 KB)   HTML
摘要: 

轻量化是支撑汽车电动化和智能化的重要赋能技术之一。抗拉强度为1500 MPa的热冲压成形用硼钢(22MnB5)是目前最经济有效的车身轻量化技术解决方案,而汽车工业对轻量化需求的日益提高正引领热冲压成形钢向着更高强度、更高塑性及更高断裂应变的方向发展。本文首先分析了车身轻量化对碰撞过程中构件变形抗力和断裂抗力的要求,解释了强度与塑性及断裂应变等材料的力学性能参量对碰撞变形抗力和断裂抗力的影响,然后介绍了作者及其他研究人员在研究开发更高强度、更高延伸率、更高断裂应变的新一代热冲压成形钢的最新进展:(1) 提出了一种新的强韧化方法,在热冲压成形钢的马氏体基体组织内引入大量纳米级的VC析出物,从而在获得2000 MPa强度的同时保持了与常规1500 MPa热冲压钢22MnB5相当的延伸率和断裂应变。(2) 在热冲压成形钢的微观组织中引入残余奥氏体,利用相变诱导塑性效应显著提升热冲压成形钢的延伸率;具体的工艺实施途径包括模具外淬火-配分工艺、淬火-闪配分工艺、淬火-回火配分工艺等。(3) 介绍了热冲压成形钢的新一代Al-Si镀层技术以及Al-Si镀层板断裂应变改善方面的最新研究进展;通过降低Al-Si镀层与钢板基体之间的合金化扩散来减少界面C富集,从而达到显著提高Al-Si镀层热冲压成形钢断裂应变的目的。

关键词 轻量化热冲压钢Al-Si镀层延伸率冷弯角断裂抗力    
Abstract

Press-hardening steels (PHS) are increasingly used for vehicle body structure components because of their lightening potential owning to superiorly high strength, adequate ductility and fracture resistance. New PHS grades with higher strength and enhanced fracture resistance are being widely studied now for achieving further vehicle weight reduction, and the recent development in this field is reviewed in this article. Combining quenching and partitioning (Q&P) with the hot stamping process has been explored by some researchers, as well as tempering after the hot stamping using the medium-Mn steels. A certain amount of austenite could remain by the above processes and the resulted tensile strength can exceed 1500 MPa while tensile ductility of 10%~16% can be achieved utilizing the transformation-induced plasticity (TRIP) effect. A V micro-alloyed steel (34MnB5V) for hot stamping has been designed, utilizing both grain refinement and precipitation strengthening of VC. The tensile strength of the newly developed 34MnB5V exceeds 2000 MPa which is much higher than that of the most commonly used PHS 22MnB5 (1500 MPa). Meanwhile, the ductility and bending properties of the above two steels are comparable. Al-Si coated PHS is usually adopted to avoid oxidation during heating and improve its corrosion resistance after stamping. However, its bendability after forming is lower than that of the bare grade when surface decarburization is absent. The thickness of the brittle Fe2Al5 phase was reduced and the carbon enrichment at the interface of α-Fe and martensite matrix was weakened after hot stamping by thinning of the Al-Si coating. Thus, the bending property was improved. The applicability of the new designed processes for the existing production lines should be considered in future studies. The bending test should be adopted for the deformability evaluation rather than the uniaxial tensile test simply. The welding property and the mechanism of hydrogen embrittlement should also be studied for industrial application of the new developed steels.

Key wordslight weighting    hot stamping steel    Al-Si coating    ductility    bendability    fracture resistance
收稿日期: 2020-01-03     
ZTFLH:  TG142.41  
基金资助:国家自然科学基金项目(51722402);国家自然科学基金项目(U1560204);中央高校基本科研业务费项目(N170705001);111计划项目(B16009)
作者简介: 易红亮,男,1981年生,教授,博士
图1  汽车零件弯曲压溃吸能实验
图2  VDA 238-100弯曲示意图与弯曲过程中的厚度方向应变的分布
SteelCSiMnTiBVFe
22MnB50.220.221.330.0290.0031-Bal.
34MnB5V0.340.321.390.0300.00250.11~0.30Bal.
表1  22MnB5和34MnB5V的化学成分[14] (mass fraction / %)
图3  22MnB5、34MnB5V原奥氏体晶界和34MnB5V的TEM像
图4  22MnB5和34MnB5V的拉伸曲线和三点尖弯曲载荷-角度曲线
图5  34MnB5V热冲压钢车门防撞梁和实车碰撞测试
图6  淬火-配分(Q&P)工艺与热冲压成形工艺的示意图
图7  22MnB5与不同处理工艺下热冲压钢的力学性能[17,18,19,20,21,36]
图8  淬火-闪配分(Q&FP)热冲压钢的TEM像
图9  22MnB5与Q&FP热冲压钢的工程应力-应变曲线
图10  中锰钢温成形的工艺路线图及其典型的拉伸曲线
图11  中锰热冲压钢淬火-回火配分(Q-T&P)和淬火-烘烤配分 (Q-B&P)的工艺路线图及其典型拉伸曲线
图12  预涂覆25 μm厚的Al-Si镀层热冲压钢的SEM像
图13  Al-Si镀层合金化之后与硼钢基体界面间高碳致脆模型
图14  预涂覆约10 μm厚的Al-Si镀层热冲压钢的SEM像
图15  Al-Si镀层板热冲压后α′基体与α-Fe相C浓度分布
图16  Al-Si镀层热冲压零件涂装烘烤之后的弯曲载荷-位移曲线以及压溃后零件裂纹扩展情况
[1] Li J, Lu H Z, Yi H L, et al. Lightweight of passenger car and niobium-microalloying steel [M]. Beijing: Beijing Institute of Technology Press, 2015: 3
[1] 李 军, 路洪洲, 易红亮等. 乘用车轻量化及微合金化钢板的应用 [M]. 北京: 北京理工大学出版社, 2015: 3
[2] Ma M T, Yi H L. Application of high strength steel to manufacturing auto [J]. Heat Treat., 2011, 26(6): 9
[2] 马鸣图, 易红亮. 高强度钢在汽车制造中的应用 [J]. 热处理, 2011, 26(6): 9
[3] Yi H L, Sun L, Xiong X C. Challenges in the formability of the next generation of automotive steel sheets [J]. Mater. Sci. Technol., 2018, 34: 1112
[4] Lee Y K, Han J. Current opinion in medium manganese steel [J]. Mater. Sci. Technol., 2015, 31: 843
[5] Chang Y, Li X D, Zhao K M, et al. Influence of stress on martensitic transformation and mechanical properties of hot stamped AHSS parts [J]. Mater. Sci. Eng., 2015, A629: 1
[6] Taylor T, Clough A. Critical review of automotive hot-stamped sheet steel from an industrial perspective [J]. Mater. Sci. Technol., 2018, 34: 809
[7] Akisue O, Usuda M. New types of steel sheets for automobile weight reduction [J]. Nippon Steel Tech. Rep., 1993, 57: 11
[8] Lu Q, Wang J, Liu Y, et al. Impact toughness of a medium-Mn steel after hot stamping [A]. Proceeding of the 6th International Conference on Hot Sheet Metal Forming of High-Performance Steel [C]. Warrendale: Association for Iron & Steel Technology, 2017: 737
[9] Larour P, Pauli T, Kurz T, et al. Influence of post uniform tensile and bending properties on the crash behaviour of AHSS and press-hardening steel grades [A]. International Deep Drawing Research Group Conference in Tools and Technologies for the Processing of Ultra High Strength Steels [C]. Graz: TU Graz, 2010: 27
[10] Larour P, Naito J, Pichler A, et al. Side impact crash behavior of press-hardened steels-correlation with mechanical properties [A]. Proceeding of the 5th International Conference on Hot Sheet Metal Forming of High-Performance Steel [C]. Auerbach: Verlag Wissenschaftliche Scripten, 2015: 281
[11] Kurz T, Larour P, Lackner J, et al. Press-hardening of zinc coated steel—Characterization of a new materials for a new process [J]. IOP Conf. Ser. Mater. Sci. Eng., 2016, 159: 012075
[12] Cheong K, Omer K, Butcher C, et al. Evaluation of the VDA 238-100 tight radius bending test using digital image correlation strain measurement [J]. J. Phys. Conf. Ser., 2017, 896: 012075
[13] VDA 238-100: Plate bending test for metallic materials [S]. 2010
[14] Yi H L, Liu H L, Chang Z Y, et al. Steel for hot stamping forming, hot stamping forming process and hot-stamping formed component [P]. Chin Pat, 10535069.3, 2016
[14] (易红亮, 刘宏亮, 常智渊等. 热冲压成形用钢材、热冲压成形工艺及热冲压成形构件 [P]. 中国专利, 10535069.3, 2016)
[15] Chang Z Y, Liu Z Y, Liu H L, et al. Microstructures and mechanical properties of an ultra-fine grained 2GPa press-hardening steel [A]. 6th International Conference on Advanced Steels [C]. Jeju: Korean Federation of Science & Technology Societies, 2018: 93
[16] Liu H P, Jin X J, Dong H, et al. Martensitic microstructural transformations from the hot stamping, quenching and partitioning process [J]. Mater. Charact., 2011, 62: 223
[17] Liu H P, Lu X W, Jin X J, et al. Enhanced mechanical properties of a hot stamped advanced high-strength steel treated by quenching and partitioning process [J]. Scr. Mater., 2011, 64: 749
[18] Seo E J, Cho L, De Cooman B C. Application of quenching and partitioning (Q&P) processing to press hardening steel [J]. Metall. Mater. Trans., 2014, 45A: 4022
[19] Linke B M, Gerber T, Hatscher A, et al. Impact of Si on microstructure and mechanical properties of 22MnB5 hot stamping steel treated by quenching & partitioning (Q&P) [J]. Metall. Mater. Trans., 2018, 49A: 54
[20] Zhu B, Liu Z, Wang Y N, et al. Application of a model for quenching and partitioning in hot stamping of high-strength steel [J]. Metall. Mater. Trans., 2018, 49A: 1304
[21] Cai H L, Chen P, Oh J K, et al. Quenching and flash-partitioning enables austenite stabilization during press-hardening processing [J]. Scr. Mater., 2020, 178: 77
[22] Chang Y, Wang C Y, Zhao K M, et al. An introduction to medium-Mn steel: Metallurgy, mechanical properties and warm stamping process [J]. Mater. Des., 2016, 94: 424
[23] Li X D, Chang Y, Wang C Y, et al. Comparison of the hot-stamped boron-alloyed steel and the warm-stamped medium-Mn steel on microstructure and mechanical properties [J]. Mater. Sci. Eng., 2017, A679: 240
[24] Yi H L, Du P J, Wang B G. A new invention of press-hardened steel achieving 1880 MPa tensile strength combined with 16% elongation in hot-stamped parts [A]. Proceeding of the 5th International Conference on Hot Sheet Metal Forming of High-Performance Steel [C]. Auerbach: Verlag Wissenschaftliche Scripten, 2015: 725
[25] Yi H L, Chang Z Y, Liu Z Y, et al. Hot stamped component, precoated steel sheet used for hot stamping and hot stamping process [P]. Chin Pat, 10401259.5, 2018
[25] 易红亮,常智渊,刘钊源等. 热冲压成形构件、热冲压成形用预涂镀钢板及热冲压成形工艺 [P]. 中国专利, 10401259.5, 2018)
[26] Karbasian H, Tekkaya A E. A review on hot stamping [J]. J. Mater. Process. Technol., 2010, 210: 2103
[27] Naderi M. Hot stamping of ultra high strength steels [D]. Aachen: University of Aachen, 2007
[28] Rana R, Singh S B. Automotive Steels: Design, Metallurgy, Processing and Applications [M]. Cambridge: Woodhead Publishing, 2017: 387
[29] Yang G W, Sun X J, Li Z D, et al. Effects of vanadium on the microstructure and mechanical properties of a high strength low alloy martensite steel [J]. Mater. Des., 2013, 50: 102
[30] Bhadeshia H, Honeycombe R. Steels: Microstructure and Properties [M]. Oxford: Butterworth-Heinemann, 2017: 111
[31] Kelly P M, Nutting J. The martensite transformation in carbon steels [J]. Proc. Roy. Soc. London, 1960, 259A: 45
[32] Ohmori A, Torizuka S, Nagai K. Strain-hardening due to dispersed cementite for low carbon ultrafine-grained steels [J].ISIJ Int., 2004, 44: 1063
[33] Song R, Ponge D, Raabe D, et al. Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels [J]. Mater. Sci. Eng., 2006, A441: 1
[34] Jia N, Shen Y F, Liang J W, et al. Nanoscale spheroidized cementite induced ultrahigh strength-ductility combination in innovatively processed ultrafine-grained low alloy medium-carbon steel [J]. Sci. Rep., 2017, 7: 2679
[35] Speer J G, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation [J]. Acta Mater., 2003, 51: 2611
[36] Hanlon D N, van Bohemen S M C, Celotto S. Critical assessment 10: tensile elongation of strong automotive steels as function of test piece geometry [J]. Mater. Sci. Technol., 2015, 31: 385
[37] Krauss G. Martensite in steel: Strength and structure [J]. Mater. Sci. Eng., 1999, A273-275: 40
[38] Hutchinson B, Hagstr?m J, Karlsson O, et al. Microstructures and hardness of as-quenched martensites (0.1-0.5%C) [J]. Acta Mater., 2011, 59: 5845
[39] Matsuda H, Mizuno R, Funakawa Y, et al. Effects of auto-tempering behaviour of martensite on mechanical properties of ultra high strength steel sheets [J]. J. Alloys Compd., 2013, 577: S661
[40] Hsu T Y, Xu Z Y. Design of structure, composition and heat treatment process for high strength steel [J]. Mater. Sci. Forum, 2007, 561-565: 2283
[41] Rong Y H, Chen N L, Jin X J, et al. Advanced high strength steels and their process development [M]. Beijing: High Education Press, 2019
[41] 戎咏华, 陈乃录, 金学军等. 先进高强度钢及其工艺发展 [M]. 北京: 高等教育出版社, 2019
[42] Luo H W, Shi J, Wang C, et al. Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel [J]. Acta. Mater., 2011, 59: 4002
[43] Yang F, Luo H W, Dong H, et al. Effects of intercritical annealing temperature on the tensile behavior of cold rolled 7Mn steel and the constitutive modeling [J]. Acta. Metall. Sin., 2018, 54: 859
[43] 阳 锋, 罗海文, 董 瀚等. 退火温度对冷轧7Mn钢拉伸行为的影响及模拟研究 [J]. 金属学报, 2018, 54: 859
[44] Hou Z R, Opitz T, Xiong X C, et al. Bake-partitioning in a press-hardening steel [J]. Scr. Mater., 2019, 162: 492
[45] Pang J C, Lu Q, Wang J F, et al. A new low density press hardening steel with superior performance [A]. Proceeding of the 7th International Conference on Hot Sheet Metal Forming of High-Performance Steel [C]. Auerbach: Verlag Wissenschaftliche Scripten, 2019: 123
[46] Wang K. Research on microstructure evolution and deformation-induced cracking of Al-Si and galvannealed coatings on hot stamping steel [D]. Wuhan: Huazhong University of Science & Technology, 2017
[46] 王 凯. 热成形钢铝硅及锌基镀层组织转变与形变开裂研究 [D]. 武汉: 华中科技大学, 2017
[47] Drillet P, Spehner D, Kefferstein R. Coated steel strips, methods of making the same, methods of using the same, stamping blanks prepared from the same, stamped products prepared from the same, and articles of manufacture which contain such a stamped product [P]. Chin Pat, 80056246.4, 2006
[47] Drillet P, Spehner D, Kefferstein R. 涂覆的钢带材、其制备方法、其使用方法、由其制备的冲压坯料、由其制备的冲压产品和含有这样的冲压产品的制品 [P]. 中国专利, 80056246.4, 2006)
[48] Windmann M, R?ttger A, Theisen W. Phase formation at the interface between a boron alloyed steel substrate and an Al-rich coating [J]. Surf. Coat. Technol., 2013, 226: 130
[49] Fan D W, Kim H S, Oh J K, et al. Coating degradation in hot press forming [J]. ISIJ Int., 2010, 50: 561
[50] Fan D W, De Cooman B C. Formation of an aluminide coating on hot stamped steel [J]. ISIJ Int., 2010, 50: 1713
[51] Grigorieva R, Drillet P, Mataigne J M, et al. Phase transformations in the Al-Si coating during the austenitization step [J]. Solid State Phenom., 2011, 172-174: 784
[52] WS 01007: Materials for components made of hot-formed steels without coating [S]. 2012
[53] GMW14400: Pre-coated or uncoated heat-treatable sheet steel [S]. 2019
[54] Choi W S, De Cooman B C. Characterization of the bendability of press-hardened 22MnB5 steel [J]. Steel Res. Int., 2014, 85: 824
[55] Cho L, Sulistiyo D H, Seo E J, et al. Hydrogen absorption and embrittlement of ultra-high strength aluminized press hardening steel [J]. Mater. Sci. Eng., 2018, A734: 416
[1] 赵永好, 毛庆忠. 纳米金属结构材料的韧化[J]. 金属学报, 2022, 58(11): 1385-1398.
[2] 孙衡,林小娉,周兵,赵圣诗,唐琴,董允. 定向凝固Mg-xGd-0.5Y合金的微观组织及拉伸变形行为[J]. 金属学报, 2020, 56(3): 340-350.
[3] 任伊宾, 赵浩川, 杨柯. 高氮无镍不锈钢接骨板的轻量化设计及生物力学研究:厚度减薄的影响[J]. 金属学报, 2017, 53(10): 1331-1336.
[4] 李小龙, 郭正洪, 戎咏华, 吴海洋, 姚圣法. 基于屈服平台理论开发的600 MPa级高强塑性螺纹钢的研究*[J]. 金属学报, 2014, 50(4): 439-446.
[5] 管志平,马品奎,宋玉泉. 超塑性拉伸断裂分析[J]. 金属学报, 2013, 49(8): 1003-1011.
[6] 向红亮 黄伟林 刘东 何福善. N含量对29Cr铸造超级双相不锈钢组织及性能的影响[J]. 金属学报, 2010, 46(3): 304-310.
[7] 初冠南 刘钢 苑世剑. 差厚拼焊管内高压胀形塑性变形规律[J]. 金属学报, 2008, 44(12): 1479-1478.
[8] 龙昕; 陈亮山; 陈怀宁 . 爆炸消除应力处理对焊接接头中残留裂纹行为的影响[J]. 金属学报, 1999, 35(5): 531-535 .
[9] 刘培生; 傅超; 李铁藩 . 高孔率金属延伸率的理论计算[J]. 金属学报, 1999, 35(4): 357-361 .
[10] 蒋兴钢;褚武扬;肖纪美. 氢致塑性损失的分形研究[J]. 金属学报, 1994, 30(6): 264-268.