|
|
低温回火对超大形变冷拔珠光体钢丝显微组织和力学性能的影响 |
冯汉臣1,闵学刚2,魏大圣1,周立初1,崔世云2,方峰1( ) |
1. 东南大学材料科学与工程学院 南京 211189 2. 江苏省宝钢精密钢丝有限公司 南通 226114 |
|
Effect of Low Temperature Annealing on Microstructure and Mechanical Properties of Ultra-Heavy Cold-DrawnPearlitic Steel Wires |
Hanchen FENG1,Xuegang MIN2,Dasheng WEI1,Lichu ZHOU1,Shiyun CUI2,Feng FANG1( ) |
1. School of Materials Science and Engineering, Southeast University, Nanjing 211189, China 2. Jiangsu Bao Steel Precision Steel Wire Co., Ltd., Nantong 226114, China |
引用本文:
冯汉臣,闵学刚,魏大圣,周立初,崔世云,方峰. 低温回火对超大形变冷拔珠光体钢丝显微组织和力学性能的影响[J]. 金属学报, 2019, 55(5): 585-592.
Hanchen FENG,
Xuegang MIN,
Dasheng WEI,
Lichu ZHOU,
Shiyun CUI,
Feng FANG.
Effect of Low Temperature Annealing on Microstructure and Mechanical Properties of Ultra-Heavy Cold-DrawnPearlitic Steel Wires[J]. Acta Metall Sin, 2019, 55(5): 585-592.
[1] | LiY J, ChoiP, BorchersC, et al. Atomic-scale mechanisms of deformation-induced cementite decomposition in pearlite[J]. Acta Mater., 2011, 59: 3965 | [2] | LanguillaumeJ, KapelskiG, BaudeletB. Cementite dissolution in heavily cold drawn pearlitic steel wires[J]. Acta Mater., 1997, 45: 1201 | [3] | EmburyJ D, FisherR M. The structure and properties of drawn pearlite[J]. Acta Metall., 1966, 14: 147 | [4] | LiY J, ChoiP, BorchersC, et al. Atom probe tomography characterization of heavily cold drawn pearlitic steel wire[J]. Ultramicroscopy, 2011, 111: 628 | [5] | BorchersC, Al-KassabT, GotoS, et al. Partially amorphous nanocomposite obtained from heavily deformed pearlitic steel[J]. Mater. Sci. Eng., 2009, A502: 131 | [6] | ZhouL C, HuX J, MaC, et al. Effect of pearlitic lamella orientation on deformation of pearlite steel wire during cold drawing[J].Acta Metall. Sin., 2015, 51: 897 | [6] | (周立初, 胡显军, 马 驰等. 珠光体层片取向对冷拔珠光体钢丝形变的影响 [J]. 金属学报, 2015, 51: 897) | [7] | BangC W, SeolJ B, YangY S, et al. Atomically resolved cementite dissolution governed by the strain state in pearlite steel wires[J]. Scr. Mater., 2015, 108: 151 | [8] | LiY J, ChoiP, GotoS, et al. Atomic scale investigation of redistribution of alloying elements in pearlitic steel wires upon cold-drawing and annealing[J]. Ultramicroscopy, 2013, 132: 233 | [9] | ZhangX D, HansenN, GodfreyA, et al. Dislocation-based plasticity and strengthening mechanisms in sub-20 nm lamellar structures in pearlitic steel wire[J]. Acta Mater., 2016, 114: 176 | [10] | LiY J, RaabeD, HerbigM, et al. Segregation stabilizes nanocrystalline bulk steel with near theoretical strength[J]. Phys. Rev. Lett., 2014, 113: 106104 | [11] | FangF, ZhouL C, HuX J, et al. Microstructure and mechanical properties of cold-drawn pearlitic wires affect by inherited texture[J]. Mater. Des., 2015, 79: 60 | [12] | FangF, ZhaoY F, ZhouL C, et al. Texture inheritance of cold drawn pearlite steel wires after austenitization[J]. Mater. Sci. Eng., 2014, A618: 505 | [13] | BorchersC, KirchheimR. Cold-drawn pearlitic steel wires[J]. Prog. Mater. Sci., 2016, 82: 405 | [14] | ZhangX D, GodfreyA, HuangX X, et al. Microstructure and strengthening mechanisms in cold-drawn pearlitic steel wire[J]. Acta Mater., 2011, 59: 3422 | [15] | DanoixF, JulienD, SauvageX, et al. Direct evidence of cementite dissolution in drawn pearlitic steels observed by tomographic atom probe[J]. Mater. Sci. Eng., 1998, A250: 8 | [16] | GavriljukV G. Decomposition of cementite in pearlitic steel due to plastic deformation[J]. Mater. Sci. Eng., 2003, A345: 81 | [17] | FangF, ZhaoY F, LiuP P, et al. Deformation of cementite in cold drawn pearlitic steel wire[J]. Mater. Sci. Eng., 2014, A608: 11 | [18] | HonoK, OhnumaM, MurayamaM, et al. Cementite decomposition in heavily drawn pearlite steel wire[J]. Scr. Mater., 2001, 44: 977 | [19] | FangF, HuX J, ChenS H, et al. Revealing microstructural and mechanical characteristics of cold-drawn pearlitic steel wires undergoing simulated galvanization treatment[J]. Mater. Sci. Eng., 2012, A547: 51 | [20] | LiY J, ChoiP, GotoS, et al. Evolution of strength and microstructure during annealing of heavily cold-drawn 6.3 GPa hypereutectoid pearlitic steel wire[J]. Acta Mater., 2012, 60: 4005 | [21] | ZhouL C, FangF, ZhouX F, et al. Cementite nano-crystallization in cold drawn pearlitic wires instigated by low temperature annealing[J]. Scr. Mater., 2016, 120: 5 | [22] | LamontagneA, MassardierV, SauvageX, et al. Evolution of carbon distribution and mechanical properties during the static strain ageing of heavily drawn pearlitic steel wires[J]. Mater. Sci. Eng., 2016, A667: 115 | [23] | JoungS W, KangU G, HongS P, et al. Aging behavior and delamination in cold drawn and post-deformation annealed hyper-eutectoid steel wires[J]. Mater. Sci. Eng., 2013, A586: 171 | [24] | WattéP, Van HumbeeckJ, AernoudtE, et al. Strain ageing in heavily drawn eutectoid steel wires[J]. Scr. Mater., 1996, 34: 89 | [25] | LamontagneA, KleberX, Massardier-JourdanV, et al. Identification of the mechanisms responsible for static strain ageing in heavily drawn pearlitic steel wires[J]. Philos. Mag. Lett., 2014, 94: 495 | [26] | TakahashiJ, KosakaM, KawakamiK, et al. Change in carbon state by low-temperature aging in heavily drawn pearlitic steel wires[J]. Acta Mater., 2012, 60: 387 | [27] | ParkD B, LeeJ W, LeeY S, et al. Effects of the annealing temperature and time on the microstructural evolution and corresponding the mechanical properties of cold-drawn steel wires[J]. Met. Mater. Int., 2008, 14: 59 | [28] | KirchheimR. Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background[J]. Acta Mater., 2007, 55: 5129 | [29] | BorchersC, ChenY, DeutgesM, et al. Carbon-defect interaction during recovery and recrystallization of heavily deformed pearlitic steel wires[J]. Philos. Mag. Lett., 2010, 90: 581 | [30] | IvanisenkoY, WunderlichR K, ValievR Z, et al. Annealing behaviour of nanostructured carbon steel produced by severe plastic deformation[J]. Scr. Mater., 2003, 49: 947 | [31] | TaylorK A, OlsonG B, CohenM, et al. Carbide precipitation during stage I tempering of Fe-Ni-C martensites[J]. Metall. Trans., 1989, 20A: 2749 | [32] | GuoW, MengY F, ZhangX, et al. Extremely hard amorphous-crystalline hybrid steel surface produced by deformation induced cementite amorphization[J]. Acta Mater., 2018, 152: 107 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|