Please wait a minute...
金属学报  2019, Vol. 55 Issue (4): 511-520    DOI: 10.11900/0412.1961.2018.00166
  本期目录 | 过刊浏览 |
奥氏体析出相激发形核的原位TEM研究
杜娟1,程晓行2,杨天南2,陈龙庆2,3,Mompiou Frédéric4,张文征1()
1. 清华大学材料学院教育部先进材料重点实验室 北京 100084
2. Department of Materials Science and Engineering, The Pennsylvania State University, University Park,PA 16802, USA
3. 清华大学材料学院新型陶瓷与精细工艺国家重点实验室 北京 100084
4. CEMES-CNRS and Université de Toulouse, 29 rue J. Marvig, 31055 Toulouse, France
In Situ TEM Study on the Sympathetic Nucleation of Austenite Precipitates
Juan DU1,Xiaoxing CHENG2,Tiannan YANG2,Longqing CHEN2,3,Frédéric Mompiou4,Wenzheng ZHANG1()
1. Key Laboratory of Advanced Materials MOE, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
2. Department of Materials Science and Engineering, The Pennsylvania State University, University Park,PA 16802, USA
3. State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
4. CEMES-CNRS and Université de Toulouse, 29 rue J. Marvig, 31055 Toulouse, France
引用本文:

杜娟, 程晓行, 杨天南, 陈龙庆, Mompiou Frédéric, 张文征. 奥氏体析出相激发形核的原位TEM研究[J]. 金属学报, 2019, 55(4): 511-520.
Juan DU, Xiaoxing CHENG, Tiannan YANG, Longqing CHEN, Fré , dé , ric Mompiou, Wenzheng ZHANG. In Situ TEM Study on the Sympathetic Nucleation of Austenite Precipitates[J]. Acta Metall Sin, 2019, 55(4): 511-520.

全文: PDF(10500 KB)   HTML
摘要: 

利用原位透射电镜(TEM)观察双相不锈钢中奥氏体析出相变过程,发现了端-面连接的奥氏体激发形核现象。定量表征结果表明,激发形核奥氏体和先驱奥氏体与母相铁素体的位向关系都接近N-W,但属于不同的位向关系,且在不同的Bain环上。基于弹性相互作用能和界面能解释了激发形核奥氏体的择优晶体学取向,计算结果表明,先驱奥氏体与不同Bain环上激发形核奥氏体的弹性相互作用能为负值,且相邻奥氏体之间可以形成孪晶取向关系及共格孪晶界。

关键词 原位透射电镜激发形核奥氏体析出相弹性相互作用能    
Abstract

Duplex stainless steels (DSSs) are widely used for chemical industry, marine construction and power plants, due to the beneficial combination of ferrite and austenite properties: high strength with a desirable toughness and good corrosion resistance. The sympathetic nucleation (SN) of intragranular austenite precipitates has been frequently observed in DSS. This type of nucleation, which occurs in a considerable variety of steels and titanium alloys, has a great effect on the morphological arrangement of precipitates and hence the mechanical properties of metallic materials. Therefore, understanding the SN mechanism of austenite precipitates is essential to knowledge based material design of the microstructure in DSS. Three types of morphological arrangement, i.e., face-to-face, edge-to-edge and edge-to-face SN of austenite precipitates, have been identified in previous investigations on DSS. The adjacent grains of face-to-face and edge-to-edge sympathetically nucleated austenite have approximately the identical orientations, with a small-angle boundary between two austenite crystals. However, as regards to the edge-to-face SN, the lacking of crystallographic features of adjacent austenite precipitates obstructs the understanding of the mechanism for the edge-to-face SN. Moreover, it is usually difficult to distinguish between SN and hard impingement following nucleation at separate sites in conventional experimental observations. Thus, in the present work, the typical morphology of edge-to-face SN of austenite precipitates was directly observed at 725 ℃ in a DSS using in situ TEM. The orientation relationship (OR) between the sympathetically nucleated austenite precipitate and ferrite matrix is determined through analysis of Kikuchi lines. Since the long axes of austenite precipitates parallel to the invariant line are restricted in the thin TEM foil, there are only four types of austenite with different near N-W ORs and cystallographically inequivalent long axes. This work reveals that the ORs of sympathetically nucleated austenite grains belong to different Bain groups with those of the pre-formed austenites. The explanation for the OR selection is provided based on two factors favoring SN, namely the reduction of elastic interaction strain energy and the interfacial energy. The local stress generated by the semi-coherent pre-formed austenite was calculated by Eshelby inclusion method. The local stress field accompanying with the pre-formed austenite assists the subsequent nucleation and growth of sympathetically nucleated austenite. It shows that the elastic interaction energy for the sympathetically nucleated austenite of particular OR is negative. In addition, the pre-formed austenite and the sympathetically nucleated austenite grain are twin related. This indicates that the nucleation barrier associated with SN of austenite with selected OR is comparably lower than other candidates. Hence, the austenite precipitate with a specific OR is preferred during SN.

Key wordsin situ TEM    sympathetic nucleation    austenite precipitate    elastic interaction energy
收稿日期: 2018-04-28     
ZTFLH:  TG113  
基金资助:国家自然科学基金项目(No.51471097)
作者简介: 杜 娟,女,1990年生,博士生
PhaseC11C12C44
γ204.6137.7126.2
α236.9140.6116.0
表1  计算中采用的单晶奥氏体(γ)和铁素体(α)的各向异性弹性常数[28]
图1  原位加热时奥氏体γ2在先驱奥氏体γ1惯习面激发形核后长大的早期过程视频截图
图2  原位冷却后端-面激发形核连接的奥氏体γ1~γ4形貌
图3  测定奥氏体γ1与母相铁素体位向关系时两相Kikuchi花样的标定
图4  迹线法测定奥氏体γ1长轴取向时γ1形貌和铁素体Kikuchi花样的标定
图5  测定奥氏体γ1惯习面取向时铁素体Kikuchi花样的标定
Parameterγ1γ2γ3γ4

OR

(011)b~∥(111)f

0.3°

(011)b~∥(111)f

0.2°

(01ˉ1)b~∥(111)f

0.5°

(01ˉ1)b~∥(111)f

0.2°

[100]b~∥[11ˉ0]f

1.6°

[1ˉ00]b~∥[11ˉ0]f

1.6°

[100]b~∥[11ˉ0]f

0.7°

[1ˉ00]b~∥[11ˉ0]f

1.1°

Long axis[0.32 0.78ˉ 0.53]b[0.26 0.53ˉ 0.81]b[0.05ˉ 0.49 0.87]b[0.22ˉ 0.82 0.53]b

Habit plane

(0.08ˉ 0.54 0.84)b

(0.41 0.54 0.73)f

-

-

-

-

(0.13 0.52ˉ 0.84)b

(0.37 0.56 0.74)f

表2  激发形核奥氏体γ1~γ4的晶体学特征
图6  奥氏体γ1~γ4长轴(Δ)及TEM样品膜面法向(fn, +)在[001]b为投影中心的极图
ParameterO-line solution for γ1O-line solution for γ4
xin[0.32 0.79ˉ 0.52]b[0.21ˉ 0.83 0.52]b

OR

(111)b~∥(011)f, 0.4°(111)b~∥(01ˉ1)f, 0.4°
[100]b~∥[11ˉ0]f, 2.3°[1ˉ00]b~∥[11ˉ0]f, 1.5°
Habit plane (p1)(0.11ˉ 0.51 0.85)b(0.07 0.52ˉ 0.85)b
b[100]b|[11ˉ0]f[100]b|[11ˉ0]f
D / nm2.22.2
d1[0.95 0.19ˉ 0.22]b[0.98ˉ 0.13 0.15]b
m11.10931.6621
表3  原位先驱奥氏体γ1和γ4的O线解计算结果[34]及其宏观不变平面应变(P1)的相关参量
图7  先驱奥氏体应力场计算中的参数设定示意图
图8  激发形核奥氏体与先驱奥氏体周围母相的弹性相互作用能密度分布图
1 Jiao H S, Aindow M, Pond R C. Precipitate orientation relationships and interfacial structures in duplex stainless steel Zeron-100 [J]. Philos. Mag., 2003, 83: 1867
2 Qiu D, Zhang W Z. A TEM study of the crystallography of austenite precipitates in a duplex stainless steel [J]. Acta Mater., 2007, 55: 6754
3 Du J, Mompiou F, Zhang W Z. A TEM study of the crystallography of lath-shaped austenite precipitates in a duplex stainless steel [J]. J. Mater. Sci., 2017, 52: 11688
4 Shek C H, Lai J K L, Wong K W, et al. Early-stage Widmanstatten growth of the γ phase in a duplex steel [J]. Metall. Mater. Trans., 2000, 31A: 15
5 Ohmori Y, Nakai K, Ohtsubo H, et al. Mechanism of Widmanstätten austenite formation in a δ/γ duplex phase stainless steel [J]. ISIJ Int., 1995, 35: 969
6 Chen C Y, Yen H W, Yang J R. Sympathetic nucleation of austenite in a Fe-22Cr-5Ni duplex stainless steel [J]. Scr. Mater., 2007, 56: 673
7 Chen T H, Yang J R. Microstructural characterization of simulated heat affected zone in a nitrogen-containing 2205 duplex stainless steel [J]. Mater. Sci. Eng., 2002, A338: 166
8 Haghdadi N, Cizek P, Hodgson P D, et al. Effect of ferrite-to-austenite phase transformation path on the interface crystallographic character distributions in a duplex stainless steel [J]. Acta Mater., 2018, 145: 196
9 Magalhães C H X M, De Faria G L, Lagoeiro L E, et al. Characterization of the austenite reformation mechanisms as a function of the initial ferritic state in a UNS S32304 duplex stainless steel [J]. Mater. Res., 2017, 20: 1470
10 Aaronson H I, Wells C. Sympathetic nucleation of ferrite [J]. Trans. Am. Inst. Min. Metall. Eng., 1956, 206: 1216
11 Phelan D, Dippenaar R. Widmanstätten ferrite plate formation in low-carbon steels [J]. Metall. Mater. Trans., 2004, 35A: 3701
12 Spanos G, Fang H S, Aaronson H I. A mechanism for the formation of lower bainite [J]. Metall. Trans., 1990, 21A: 1381
13 Beladi H, Tari V, Timokhina I B, et al. On the crystallographic characteristics of nanobainitic steel [J]. Acta Mater., 2017, 127: 426
14 Fang H S, Wang J J, Yang Z G, et al. Formation of bainite in ferrous and nonferrous alloys through sympathetic nucleation and ledgewise growth mechanism [J]. Metall. Mater. Trans., 1996, 27A: 1535
15 Menon E S K, Aaronson H I. Morphology, crystallography and kinetics of sympathetic nucleation [J]. Acta Metall., 1987, 35: 549
16 Meng M, Fan X G, Yang H, et al. Precipitation of secondary alpha in competition with epitaxial growth of primary alpha in two-phase titanium alloys [J]. J. Alloys Compd., 2017, 714: 294
17 Menon E S K, Krishnan R. Phase transformations in Ti-V alloys [J]. J. Mater. Sci., 1983, 18: 375
18 Tang B, Kou H C, Zhang X, et al. Study on the formation mechanism of α lamellae in a near β titanium alloy [J]. Prog. Nat. Sci.: Mater. Int., 2016, 26: 385
19 Spanos G, Aaronson H I. Morphology, crystallography and mechanism of sympathetic nucleation of proeutectoid cementite plates [J]. Scr. Metall., 1988, 22: 1537
20 Ameyama K, Weatherly G C, Aust K T. A study of grain boundary nucleated widmanstätten precipitates in a two-phase stainless steel [J]. Acta Metall. Mater., 1992, 40: 1835
21 Aaronson H I, Spanos G, Masamura R A, et al. Sympathetic nucleation: An overview [J]. Mater. Sci. Eng., 1995, B32: 107
22 Lee J K, Johnson W C. Elastic strain energy and interactions of thin square plates which have undergone a simple shear [J]. Scr. Metall., 1977, 11: 477
23 Russell K C, Barnett D M, Altstetter C J, et al. Strain energy interactions, the To concept and sympathetic nucleation [J]. Scr. Metall., 1977, 11: 485
24 Qiu D, Shi R, Zhang D, et al. Variant selection by dislocations during α precipitation in α/β titanium alloys [J]. Acta Mater., 2015, 88: 218
25 Shi R, Wang Y. Variant selection during α precipitation in Ti-6Al-4V under the influence of local stress—A simulation study [J]. Acta Mater., 2013, 61: 6006
26 Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems [J]. Proc. R. Soc. London, 1957, 241A: 376
27 Wang J J, Ma X Q, Li Q, et al. Phase transitions and domain structures of ferroelectric nanoparticles: Phase field model incorporating strong elastic and dielectric inhomogeneity [J]. Acta Mater., 2013, 61: 7591
28 Jia N, Lin P R, Wang Y D, et al. Micromechanical behavior and texture evolution of duplex stainless steel studied by neutron diffraction and self-consistent modeling [J]. Acta Mater., 2008, 56: 782
29 Zhang M X. Crystallography of phase transformation in steels [D]. Brisbane: University of Queensland, 1997
30 Wu J. Study on microstructure and transformation crystallography of lath martensite in Fe-20Ni-5.4Mn(wt%) alloy [D]. Beijing: Tsinghua University, 2011
30 吴 静. Fe-20Ni-5.4Mn(wt%)合金中板条马氏体微结构和相变的研究 [D]. 北京: 清华大学, 2011
31 Crosky A, Mcdougall P G, Bowles J S. The crystallography of the precipitation of α rods from β Cu-Zn alloys [J]. Acta Metall., 1980, 28: 1495
32 Wayman C M. Introduction to the Crystallography of Martensitic Transformations [M]. New York: MacMilla, 1964: 84
33 Zhang W Z, Purdy G R. O-lattice analyses of interfacial misfit. Ⅱ. Systems containing invariant lines [J]. Philos. Mag., 1993, 68: 291
34 Du J. A TEM study on the austenite/ferrite interface migration in a duplex stainless steel [D]. Beijig: Tsinghua University, 2018.
34 (杜 娟. 双相不锈钢中奥氏体/铁素体界面迁移的透射电镜研究 [D]. 北京:清华大学,2018
35 Bowles J S, Mackenzie J K. The crystallography of martensite transformations I [J]. Acta Metall., 1954, 2: 129
36 Wechsler M S, Lieberman D S, Read T A. On the theory of the formation of martensite [J]. Trans. Am. Inst. Min. Metall. Eng., 1953, 197: 1503
37 Porter D A, Easterling K E, Sherig M Y, translated by Chen L, Yu Y N. Phase Transformations in Metals and Alloys [M]. Beijing: High Education Press, 2011: 104
37 (Porter D A, Easterling K E, Sherif M Y著, 陈 冷, 余永宁译. 金属和合金中的相变 [M]. 北京: 高等教育出版社, 2011: 104)
38 Brandon D G. The structure of high-angle grain boundaries [J]. Acta Metall., 1966, 14: 1479
[1] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[2] 薄祥正;方鸿生. 仿晶型铁素体表面浮凸的扫描隧道显微镜研究[J]. 金属学报, 1998, 34(8): 807-812.
[3] 薄祥正;方鸿生;王家军;黄维刚;张柏清. Fe-C-Si-Mn合金中贝氏体表面浮突的精细结构[J]. 金属学报, 1998, 34(3): 225-231.
[4] 李春明;方鸿生;郑燕康;王家军;杨志刚. Cu-Zn-Al合金贝氏体的亚单元及其激发形核、台阶生长[J]. 金属学报, 1996, 32(1): 1-5.