Please wait a minute...
金属学报  2015, Vol. 51 Issue (2): 129-147    DOI: 10.11900/0412.1961.2014.00396
  本期目录 | 过刊浏览 |
钛铝金属间化合物的进展与挑战*
杨锐()
中国科学院金属研究所, 沈阳 110016
ADVANCES AND CHALLENGES OF TiAl BASE ALLOYS
()
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

杨锐. 钛铝金属间化合物的进展与挑战*[J]. 金属学报, 2015, 51(2): 129-147.
. ADVANCES AND CHALLENGES OF TiAl BASE ALLOYS[J]. Acta Metall Sin, 2015, 51(2): 129-147.

全文: PDF(5410 KB)   HTML
摘要: 

按照起步(1974~1985年), 热潮(1986~1995年), 兴起(1996~2005年)和特定应用(2006年~) 4个阶段回顾了钛铝金属间化合物的研发历程, 评述了各阶段对钛铝合金发展起到主导作用的里程碑事件, 简要总结了在合金化、显微组织类别、一次加工(熔炼)、二次加工(热加工)、性能、三次加工(成形)等6个方面的主要进展. 提出了钛铝合金未来发展面临的5方面挑战: 铸造合金与技术的进一步发展、低成本变形合金技术、第三代合金研制、基于新制备技术的新应用以及新成形工艺研发。

关键词 钛铝金属间化合物低成本工艺应用技术挑战    
Abstract

The history of research and development of γ-TiAl intermetallic alloys was outlined and divided into 4 stages: starting (1974~1985), revolutionary (1986~1995), emerging (1996~2005) and specialty materials (2006~). Major events and landmarks at the different stages were recounted to provide a framework for understanding scientific and technological progress. Key advances in the following 6 areas were reviewed: alloying, microstructure type, primary processing (melting), secondary processing (hot working), properties (including creep, fracture and fatigue, and oxidation), and tertiary processing (forming, covering both investment casting and near-net shape powder metallurgy). Future challenges were identified as follows: improvement of centrifugal casting technology, low-cost wrought process, development of third-generation alloys that meet design specifications, new applications based on new technologies, and viability of new forming routes such as additive manufacturing。

Key wordsγ-TiAl intermetallic alloy    cost-effective processing route    application    future challenge
收稿日期: 2014-07-18     
ZTFLH:  TG146.2  
作者简介: null

杨锐, 男, 1965年生, 研究员

图1  Ti-Al二元相图[4]
图2  先进材料的发展阶段[13]
图3  Ti-46Al-8Nb合金显微组织和冷却速率的关系[37]
图4  Ti-47Al合金在1200 ℃单道压缩至70%的扫描电镜照片[109]
图5  γ-TiAl合金片层碎化过程[109]
图6  中国科学院金属研究所采用热挤压工艺制造的γ-TiAl合金汽车发动机排气阀坯料和加工得到的排气阀
图7  挤压态组织在α固溶处理和冷却时织构演化示意图[112]
图8  失蜡精密铸造技术的工艺环节[173]
图9  中国科学院金属研究所制造的γ-TiAl合金低压涡轮叶片精密铸件
图10  中国科学院金属研究所制造的γ-TiAl合金汽车发动机活塞精密铸件
图10  中国科学院金属研究所采用近净形粉末冶金工艺制造的γ-TiAl合金汽车发动机连杆
[1] McAndrew J B, Kessler H D. JOM, 1956; 10: 1348
[2] Shechtman D, Blackburn M J, Lipsitt H A. Metall Trans, 1974; 5: 1373
[3] Lipsitt H A, Shechtman D, Schafrik R E. Metall Trans, 1975; 6A: 1991
[4] Schuster J C, Palm M. J Phase Equilib Diffus, 2006; 27: 255
[5] Huang S C, Chesnutt J C. In: Westbrook J H, Fleischer R L eds., Structural Applications of Intermetallic Compounds. Chapter 4, New York: Wiley, 2000: 1
[6] Kainuma R, Palm M, Inden G. Intermetallics, 1994; 2: 321
[7] Ohnuma I, Fujita Y, Mitsui H, Ishikawa K, Kainuma R, Ishida K. Acta Mater, 2000; 48: 3113
[8] Suzuki A, Takeyama M, Matsuo T. Intermetallics, 2002; 10: 915
[9] Veeraraghavan D, Pilchowski U, Natarajan, B, Vasudevan V K. Acta Mater, 1998; 46: 405
[10] Witusiewicz V T, Bondar A A, Hecht U, Rex S, Velikanova T Ya. J Alloys Compd, 2008; 465: 64
[11] Blackburn M J, Smith M P. R&D on Composition and Processing of Titanium Aluminide Alloys for Turbine Engines, AFWAL-TR-82-4086, June, 1982
[12] Lipsitt H A. In: Koch C C, Liu C T, Stoloff N S eds., High-Temperature Ordered Intermetallic Alloys. Materials Research Society Symposia Procedings. Vol.39, Warrendale, PA: MRS, 1985: 351
[13] Dimiduk D M, Dutton R. Technical Report OMB No. 0704-0188, Materials and Manufacturing Directorate Air Force Research Laboratory, January, 2004
[14] National Research Council(NRC). Accelerating Technology Transition: Bridging the Valley of Death for Materials and Processes in Defense Systems. Washington: The National Academies Press, 2004: 1
[15] Aoki K, Izumi O. Nippon Kinzoku Gakkaishi, 1979; 43: 1190
[16] Liu C T, White C L, Horton J A. Acta Metall, 1985; 33: 213
[17] Djanarthany S, Viala J C, Bouix J. Mater Chem Phys, 2001; 72: 301
[18] Kim Y W, Wagner R, Yamaguchi M eds., Gamma Titanium Aluminides, Warrendale, PA: TMS, 1995: 1
[19] Kim Y W. JOM, 1989; 41(7): 24
[20] Kim Y W, Dimiduk D M. JOM, 1991; 43(8): 40
[21] Kim Y W. JOM, 1994; 46(7): 30
[22] Kim Y W. JOM, 1995; 47(7): 39
[23] Larsen D E Jr. Mater Sci Eng, 1996; A213: 128
[24] National MaterialsManufacturing Board. Materials Needs and Research and Development Strategy for Future Military Aerospace Propulsion Systems. Washington: National Academies Press, 2011: 188
[25] Sadler P, Kumar K S, Green J A S. Martin Marietta Laboratories Technical Report MML-TR-93-09, 1993
[26] Pollock T M, Steif P S. A University-Industry Partnership for Research and Transition of Gamma Titanium Aluminides: Final Report, AFRL-SR-BL-TR-01-0633, 1999
[27] Draper S L, Lerch B A, Pereira M, Miyoshi K, Arya V K, Zhuang W. Durability Assessment of Gamma TiAl–Final Report, NASA/TM-2004-212303, 2004
[28] Murtagian G R. PhD Dissertation, Georgia Institute of Technology, 2004
[29] Tetsui T. In: Kim Y W, Dimiduk D M, Loretto M H eds., Gamma Titanium Aluminides, Warrendale, PA: TMS, 1999: 15
[30] Wu X. Intermetallics, 2006; 14: 1114
[31] Gebauer K. Intermetallics, 2006; 14: 355
[32] European Commission DG Research and Innovation. Light-Weight Valves for High-Efficiency Engines, 2000-2004.
[33] Appel F, Paul D H, Oehring M. Gamma Titanium Aluminide Alloys: Science and Technology. Weinheim, Germany: Wiley, 2011: 1
[34] Chen G L, Sun Z Q, Zhou X. Mater Sci Eng, 1992; A153: 597
[35] Paul J D H, Appel F, Wagner R. Acta Mater, 1998; 46: 1075
[36] Xu X J, Lin J P, Zhang L Q, Liang Y F. In: Kim Y W, Smarsly W, Lin J P, Dimiduk D eds., Gamma Titanium Aluminide, Warrendale, PA: TMS, 2014: 71
[37] Hu D, Huang A J, Gregoire A, Li X, Wu X, Loretto M. Mater Sci Forum, 2005; 29: 172
[38] Blackburn M J. In: Jaffee R, Promisel N eds., The Science, Technology and Applications of Titanium. London: Pergamon, 1970: 633
[39] Kumagai T, Abe E, Takeyama M, Nakamura M. Scr Mater, 1997; 36: 523
[40] Hu D, Huang A J, Novovic D, Wu X. Intermetallics, 2006; 14: 818
[41] Huang A J, Loretto M H, Hu D, Liu K, Wu X. Intermetallics, 2006; 14: 838
[42] Naka S. In: Nathal M V, Darolia R, Liu C T, Martin P L, Miracle D B, Wagner R, Yamaguchi M eds., Structural Intermetallics, Warrendale, PA: TMS, 1997: 313
[43] Burgers W G. Physica, 1934; 1: 561
[44] Kim Y W, Kim S L, Dimiduk D, Woodward C. In: Kim Y W, Morris D, Yang R, Leyens C eds., Structrural Applications for High Temperatures, Warrendale, PA: TMS, 2008: 215
[45] Clemens H, Chladil H F, Wallgram W, Zickler G A, Gerling R, Liss K D, Kremmer S, Güther V, Smarsly W. Intermetallics, 2008; 16: 827
[46] Wallgram W, Schmölzer T, Cha L M, Das G, Güther V, Clemens H. Int J Mater Res, 2009; 100: 1021
[47] Huang Z W, Cong T. Intermetallics, 2010; 18: 161
[48] Norris G. Flight International 13th, Power House, June, 2006
[49] Bewlay B P, Weimer M, Kelly T, Suzuki A, Subramanian P R. In: Baker I, Heilmaier M, Kuma S, Yoshimi K eds., Intermetallic-Based Alloys—Science, Technology and Applications, Materials Research Society Symposia Procedings, Vol.1516, Warrendale, PA: MRS, 2013: 49
[50] McQuay P. In: Kim Y W, Smarsly W, Lin J P, Dimiduk D eds., Gamma Titanium Aluminide, Warrendale, PA: TMS, 2014: in
[51] Javis D J, Voss D. Mater Sci Eng, 2005; A413-414: 583
[52] Heppener M, Minster O, Jarvis D J. Acta Astronaut, 2008; 63: 20
[53] European Space Agency. Final Report of IMPRESS Project: Publishable Executive Summary, 2009: 1
[54] Kim Y W, Dimiduk D M, Loretto M H eds., Gamma Titanium Aluminides, Warrendale, PA: TMS, 1999: 1
[55] Kim Y W, Clemens H, Rosenberger A H eds., Gamma Titanium Aluminide, Warrendale, PA: TMS, 2003: 1
[56] Kim Y W, Morris D, Yang R, Leyens C eds., Structural Aluminides for Elevated Temperatures, Warrendale, PA: TMS, 2008: 1
[57] Kim Y W, Smarsly W, Lin J P, Dimikuk D eds., Gamma Titanium Aluminide, Warrendale, PA: TMS, 2014: 1
[58] Hanamura T, Uemori R, Tanino M. J Mater Res, 1988; 3: 656
[59] Huang S C, Hall E L. Metall Trans, 1991; 22A: 2619
[60] Kawabata T, Tamura T, Izumi O. Metall Trans, 1993; 24A: 141
[61] Sun F S, Cao C X, Kim S E, Lee Y T, Yan M G. Metall Mater Trans, 2001; 32A: 1573
[62] Beddoes J, Seo D Y, Chen W R, Zhao L. Intermetallics, 2001; 9: 915
[63] Huang Z W, Voice W, Bowen P. In: Hemker K J, Dimiduk D M, Clemens H, Darolia R, Inui H, Larsen J M, Sikka V K, Thomas M, Whittenberger J D eds., Structural Intermallics, Warrendale, PA: TMS, 2001: 551
[64] Stark A, Oehring M, Pyczak F, Schrreyer A. Adv Eng Mater, 2011; 13: 700
[65] Yu R, He L L, Cheng Z Y, Zhu J, Ye H Q. Intermetallics, 2002; 10: 661
[66] Paul J D H, Appel F, Wagner R. Acta Mater, 1998; 46: 1075
[67] Zhang W J, Deevi S C, Chen G L. Intermetallics, 2002; 10: 403
[68] Fröbel U, Appel F. Acta Mater, 2002; 50: 3693
[69] Woodward C, Kajihara S A, Rao S I, Dimiduk D M. In: George E P, Mills M J, Yamaguchi M eds., High-Temperature Ordered Intermetallic Alloys VIII. Warrendale, PA: MRS, 1999: KK281
[70] Li Y J, Hu Q M, Xu D S, Yang R. Intermetallics, 2011; 19: 793
[71] Hao Y L, Xu D S, Cui Y Y, Yang R, Li D. Acta Mater, 1999; 47: 1129
[72] Yang R. In: Kim Y W, Smarsly W, Lin J P, Dimiduk D eds., Gamma Titanium Aluminide, Warrendale, PA: TMS, 2014: 123
[73] Bryant J D, Christodoulou L, Maisano J R. Scr Metall Mater, 1990; 24: 33
[74] Cheng T T. Intermetallics, 2000; 8: 29
[75] Hu D. Intermetallics, 2001; 9: 1037
[76] Hecht U, Witusiewicz V, Drevermann A, Zollinger J. Intermeta-llics, 2008; 16: 969
[77] Kitkamthorn U, Zhang L C, Aindow M. Intermetallics, 2006; 14: 759
[78] Lindemann J, Glavatskikh M, Leyens C, Ross-Fagaraseanu D. In: Kim Y W, Morris D, Yang R, Leyens C eds., Structural Aluminides for Elevated Temperatures, Warrendale, PA: TMS, 2008: 257
[79] Chen S, Beaven P A, Wagner R. Scr Metall Mater, 1992; 26: 1205
[80] Tian W H, Sano T, Nemoto M. Philos Mag, 1993; 68A: 965
[81] Appel F, Fischer F D, Clemens H. Acta Mater, 2007; 55: 4915
[82] Tsuyama S, Mitao S, Minakawa K N. Mater Sci Eng, 1992; A153: 451
[83] Noda T, Okabe M, Isobe S, Sayashi M. Mater Sci Eng, 1995; A192-193: 774
[84] Yu R, He L L, Guo J T, Ye H Q, Lupinc V. Acta Mater, 2000; 48: 3701
[85] Huguet A, Menand A. Appl Surf Sci, 1994; 76-77: 191
[86] Neroc-Partaix A, Menand A. Scr Mater, 1996; 35: 199
[87] Kawabata T, Tadano M, Izumi O. Scr Metall, 1988; 22: 1725
[88] Kawabata T, Abumiya T, Izumi O. Acta Metall Mater, 1992; 40: 2557
[89] Ponchel A. PhD Dissertation, Universite Pierre et Marie Curie Paris VI, 2001
[90] Thomas M, Bacos M P. Aerosp Lab, 2011; 3: 1
[91] Grange M, Raiart J L, Thomas M. Metall Mater Trans, 2004; 35A: 2087
[92] Clemens D R. In: Hemker K J, Dimiduk D M, Clemens H, Darolia R, Inui H, Larsen J M, Sikka V K, Thomas M, Whittenberger J D eds., Structrual Intermetallics 2001, Warrendale, PA: TMS, 2001: 217
[93] De Graef M, Biery N, Rishel L, Pollock T M, Cramb A. In: Kim Y W, Dimiduk D M, Loretto M H eds., Gamma Titanium Aluminides, Warrendale, PA: TMS, 1999: 247
[94] Johnson D R, Inui H, Yamaguchi M. Intermetallics, 1998; 6: 647
[95] Küstner V, Oehring M, Chatterjee A, Güther V, Brokmeier H G, Clemens H, Appel F. In: Kim Y W, Clemens H, Rosenberger A H eds., Gamma Titanium Aluminides, Warrendale, PA: TMS, 2003: 89
[96] Hecht U, Daloz D, Lapin J, Drevermann A, Witusiewicz V T, Zollinger J. In: Palm M, Bewlay P B, He Y H, Takeyama M, Wiezorek J M K eds., Mater Research Society Symposium Proceedings, Warrendale, PA: MRS, 2009: paper No.1128-U03-01
[97] Jung J Y, Park J K, Chun C H. Intermetallics, 1999; 7: 1033
[98] Eiken J, Appel M, Witsuiewicz V T, Zollinger J, Hecht U. J Phys Condens Matter, 2009; 21: 464104
[99] Kim J H, Shin D H, Semiatin S L, Lee C S. Mater Sci Eng, 2003; A344: 146
[100] Seetharaman V, Semiatin S L. Metall Mater Trans, 2002; 33A: 3817
[101] Cahn R W, Takeyama M, Horton J A, Liu C T. J Mater Res, 1991; 6: 57
[102] Yang R, Botton G A, Cahn R W. Acta Mater, 1996; 44: 3869
[103] Semiatin S L, Chesnutt J C, Austin C, Seetharaman V. In: Nathal M V, Darolia R, Liu C T, Martin P L, Miracle D B, Wagner R, Yamaguchi M eds., Structural Intermetallics, Warrendale, PA: TMS, 1997: 263
[104] Fukutomi H, Nomoto A, Osuga Y, Ikeda S, Mecking H. Intermetallics, 1996; 4: S49
[105] Salishchev G A, Imayev R M, Senkov O N, Imayev V M, Gabdullin N K, Shagiev M R, Kuznetsov A V, Froes F H. Mater Sci Eng, 2000; A286: 236
[106] Imayev R M, Salishchev G A, Imayev V M, Shagiev M R, Kuznetsov M R, Appel F, Oehring M, Senkov O N, Froes F H. In: Kim Y W, Dimiduk D M, Loretto M H eds., Gamma Titanium Aluminides, Warrendale, PA: TMS, 1999: 565
[107] Imayev R M, Imayev V M, Oehring M, Appel F. Metall Mater Trans, 2005; 36A: 859
[108] Fröbel U, Appel F. Metall Mater Trans, 2007; 38A: 1817
[109] Sun W. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2009
[109] (孙伟. 中国科学院金属研究所博士学位论文, 沈阳, 2009)
[110] Oehring M, Lorenz U, Niefanger R, Christoph U, Appe F, Wagner R, Clemens H, Eberhardt N. In: Kim Y W, Dimiduk D M, Loretto M H eds., Gamma Titanium Aluminides, Warrendale, PA: TMS, 1999: 439
[111] Oehring M, Lorenz U, Appel F, Roth-Fagaraseanu D. In: Hemker K J, Dimiduk D M, Clemens H, Darolia R, Inui H, Larsen J M, Sikka V K, Thomas M, Whittenberger J D eds., Structural Intermetallics, Warrendale, PA: TMS, 2001: 157
[112] Liu R C, Liu D, Tan J, Cui Y Y, Yang R, Liu F Y, Withey P A. Intermetallics, 2014; 52: 110
[113] Doherty R D, Hughes D A, Humphreys F J, Jonas J J, Jensen D J, Kassner M E, King W E, McNelley T R, McQueen H J, Rollett A D. Mater Sci Eng, 1997; A238: 219
[114] Brokmeier H G, Oehring M, Lorenz U, Clemens H, Appel F. Metall Mater Trans, 2004; 35A: 3563
[115] Zhang W J, Deevi S C. In: Hemker K J, Dimiduk D M, Clemens H, Darolia R, Inui H, Larsen J M, Sikka V K, Thomas M, Whittenberger J D eds., Structural Intermetallics, Warrendale, PA: TMS, 2001: 699
[116] Veyssière P. Mater Sci Eng, 2001; A309-310: 44
[117] Es-Souni M, Bartels A, Wagner R. Mater Sci Eng, 1995; A192-193: 698
[118] Worth D B, Jones J W, Allison J E. Metall Trans, 1995; 26A: 2947
[119] Morris M A, Leboeuf T. Intermetallics, 1997; 5: 339
[120] Wang J G, Hsiung L M, Nieh T G. Scr Mater, 1998; 39: 957
[121] Maruyama K, Yamamoto R, Nakakuki H, Fujitsuna N. Mater Sci Eng, 1997; A239-240: 419
[122] Parthasarathy T A, Subramanian P R, Mendiratta M G, Dimiduk D M. Acta Mater, 2000; 48: 541
[123] Hayes R W, Martin P L. Acta Metall Mater, 1995; 43: 2761
[124] Zhang W J, Spigarelli S, Cerri E, Evangelista E, Francesconi L. Mater Sci Eng, 1996; A211: 15
[125] Du X W, Zhu J, Kim Y W. Intermetallics, 2001; 9: 137
[126] Appel F. Intermetallics, 2001; 9: 907
[127] Es-Souni M, Bartels A, Wagner R. Acta Metall Mater, 1995; 43: 153
[128] Zhang W J, Deevi S C. Intermetallics, 2003; 11: 177
[129] Taniguchi S, Hongawara N, Shibata T. Mater Sci Eng, 2001; A307: 107
[130] Brady M P, Smialek J L, Humphrey D L, Smith J. Acta Mater, 1997; 45: 2371
[131] Zeller A, Dettenwanger F, Schütze M. Intermetallics, 2002; 10: 59
[132] Rahmel A, Quadakkers W J, Schütze M. Mater Corros, 1995; 46: 271
[133] Quadakkers W J, Schaaf P, Zheng N, Gil A, Wallura E. Mater Corros, 1997; 48: 28
[134] Zhu L G, Hu Q M, Yang R, Ackland G J. J Phys Chem, 2012; 116C: 24201
[135] Schmiedgen M, Graat P C J, Baretzky B, Mittemeijer E J. Thin Solid Films, 2002; 415: 114
[136] Song Y, Dai J H, Yang R. Surf Sci, 2012; 606: 852
[137] Song Y, Xing F J, Dai J H, Yang R. Intermetallics, 2014; 49: 1
[138] Lang C, Schutze M. Oxid Met, 1996; 46: 284
[139] Ping F P, Hu Q M, Yang R. Acta Metall Sin, 2013; 49: 385
[139] (平发平, 胡青苗, 杨锐. 金属学报, 2013; 49: 385)
[140] Li X Y, Taniguchi S. Intermetallics, 2004; 12: 11
[141] Kumagai M, Shibue K, Kim M S, Furuyama T. US Pat, 5,451,366., 1995
[142] Masset P J, Neve S, Zschau H E, Schütze M. Mater Corros, 2008; 59: 609
[143] Deve H E, Evans A G. Acta Metall Mater, 1991; 39: 1171
[144] Mitao S, Tsuyama S, Minakawa K. Mater Sci Eng, 1991; A143: 51
[145] Chan K S, Kim Y W. Acta Metall Mater, 1995; 43: 439
[146] Song Y, Xu D S, Yang R, Li D, Hu Z Q. Intermetallics, 1998; 6: 157
[147] Song Y, Yang R, Li D, Hu Z Q, Guo Z X. Intermetallics, 2000; 8: 563
[148] Song Y, Guo Z X, Yang R, Li D. Comput Mater Sci, 2002; 23: 55
[149] Yoo M H, Fu C L. Mater Sci Eng, 1992; A153: 470
[150] Yoo M H, Zou J, Fu C L. Mater Sci Eng, 1995; A192-193: 14
[151] Nakano T, Kawanaka T, Yasuda H Y, Umakoshi Y. Mater Sci Eng, 1995; A194: 43
[152] Yokoshima S, Yamaguchi M. Acta Mater, 1996; 44: 873
[153] Appel F. Philos Mag, 2005; 85: 205
[154] Lorenz U, Appel F, Wagner R. Mater Sci Eng, 1997; A234-236: 846
[155] Sastry S M L, Lipsitt H A. Metall Trans, 1977; 8A: 299
[156] Larsen J M. In: Kim Y W, Dimiduck D M, Loretto M eds., Gamma Titanium Aluminides, Warrendal, PA: TMS, 1999: 463
[157] Vaidya W V, Schwalbe K H, Wagner R. In: Kim Y W, Wagner R, Yamaguchi M eds., Gamma Titanium Aluminides, Warrendale, PA: TMS, 1995: 867
[158] Trail S J, Bowen P. Mater Sci Eng, 1995; A193: 427
[159] Harding T S, Jones J W. Scr Mater, 2000; 43: 623
[160] Draper S L, Lerch B A, Pereira J M, Nathal M V, Nazmy M Y, Staubli M. In: Hemker K J, Dimiduk D M, Clemens H, Darolia R, Inui H, Larsen J M, Sikka V K, Thomas M, Whittenberger J D eds., Structural Intermetallics, Warrendale, PA: TMS, 2001: 295
[161] Harding T S, Jones J W. Metall Mater Trans, 2001; 32A: 2975
[162] Umakoshi Y, Yasuda H Y, Nakano T. Intermetallics, 1996; 4: S65
[163] Recina V. Mater Sci Technol, 2000; 16: 333
[164] Gloanec A L, Bertheau D, Jouiad M, Henaff G, Grange M, Belaygue P. In: Kim Y W, Rosenberger A H, Clemens H eds., Gamma Titanium Aluminides, San Diego, CA: TMS, 2003: 485
[165] Park Y S, Nam S W, Hwang S K. Mater Lett, 2002; 53: 392
[166] Appel F, Heckel T K, Christ H J. Int J Fatigue, 2010; 32: 792
[167] Hénaff G, Gloanec A L. Intermetallics, 2005; 13: 543
[168] Hénaff G, Tonneau A, Mabru C. In: Hemker K J, Dimiduk D M, Clemens H, Darolia R, Inui H, Larsen J M, Sikka V K, Thomas M, Whittenberger J D eds., Structural Intermetallics 2001, Warrendale, PA: TMS, 2001: 571
[169] Kruzic J J, Campbell J P, McKelvey A L, Choe H, Ritchi R O. In: Kim Y W, Dimiduk D M, Loretto M H eds., Gamma Titanium Aluminides, Warrendale, PA: TMS, 1999: 495
[170] Campbell J P, Kruzic J J, Lillibridge S, Venkateswara Rao K T, Ritchie R O. Scr Mater, 1997; 37: 707
[171] McQuay P A, Sikka V K. In: Westbrook J H, Fleischer R L eds., Intermetallic Compounds—Principles and Practice. Vol.3, London: Wiley, 2002: 591
[172] Harding R A, Wickins M, Wang H, Djambazov G, Pericleous K A. Intermetallics, 2011; 19: 805
[173] Aguilar J, Schievenbusch A, Kättlitz O. Intermetallics, 2011; 19: 757
[174] Oehring M, Appel F, Paul J D H, Imayev R M, Imaye V M, Lorenz U. Mater Sci Forum, 2010; 638-642: 1394
[175] Hu D, Jiang H, Wu X. Intermetallics, 2009; 17: 744
[176] Imayev R M, Imayev V M, Oehring M, Appel F. Intermetallics, 2007; 15: 451
[177] Thomas M, Raviart J L, Popoff F. Intermetallics, 2005; 13: 944
[178] Clemens H, Kestler H, Eberhardt N, Knabl W. In: Kim Y W, Dimiduk D M, Loretto M H eds., Gamma Titanium Aluminides, Warrendale, PA: TMS, 1999: 209
[179] Gerling R, Clemens H, Schimansky F P. Adv Eng Mater, 2004; 6: 23
[180] Graves J A, Perepezko J H, Ward C H, Froes F H. Scr Metall, 1987; 21: 567
[181] Huang A, Hu D, Loretto M H, Mei J, Wu X. Scr Mater, 2007; 56: 253
[182] Xu L, Bai C G, Liu D, Sun W, Yu D J, Cui Y Y, Yang R. In: Kim Y W, Morris D, Yang R, Leyens C eds., Structural Aluminides for Elevated Temperatures, Warrendale, PA: TMS, 2008: 179
[183] Xu L, Wu J, Cui Y Y, Yang R. In: Kim Y W, Smarsly W, Lin J P, Dimiduk D eds., Gamma Titanium Aluminide, Warrendale, PA: TMS, 2014: 195
[184] Integrated Computational Materials Engineering (ICME). Implementing ICME in the Aerospace, Automotive and Maritime Industries. Warrendale, PA: TMS, 2013: 1
[185] Lasalmonie A. Intermetallics, 2006; 14: 1123
[186] Inui H, Oh M H, Nakamura A, Yamaguchi M. Acta Metall Mater, 1992; 40: 3095
[187] Yokoshima S, Yamaguchi M. Acta Mater, 1996; 44: 873
[188] Jin H, Liu R H, Cui Y Y, Xian Q G, Xu D S, Yang R. In: Kim Y W, Smarsly W, Lin J P, Dimiduk D eds., Gamma Titanium Aluminide, Warrendale, PA: TMS, 2014: 143
[189] Couret A, Molenat G, Galy J, Thomas M. Intermetallics, 2008; 16: 1134
[190] Moll J H, Whitney E, Yolton C F, Habel U. In: Kim Y W, Dimiduk D M, Loretto M H eds., Gamma Titanium Aluminides, Warrendale, PA: TMS, 1999: 255
[191] Srivastava D, Chang I T H, Loretto M H. In: Kim Y W, Dimiduk D M, Loretto M H eds., Gamma Titanium Aluminides, Warrendale, PA: TMS, 1999: 265
[192] Murr L E, Gaytan S M, Ceylan A, Martinez E, Martinez J L, Hernandez D H, Bachado B I, Ramirez D A, Medina F, Collins S, Wicker R B. Acta Mater, 2010; 58: 1887
[193] Porter J, Wooten J, Harrysson O, Knowlson K. Materials Science and Technology—Association for Iron & Steel Technology. Vol.2, Warrendal, PA: Association for Iron & Steel Technology, 2011: 1434
[194] Franzén S F, Karlsson J. Diploma Work No.37/2010, Chalmers University of Technology, Sweden, 2010
[195] Terner M, Biamino S, Epicoco P, Penna A, Hedin O, Sabbadini S, Fino P, Pavese M, Ackelid U, Gennaro P, Pelissero F, Badni C. Steel Res Int, 2012; 83: 943
[196] Biamino S, Klöden B, Weissgärber T, Kieback B, Ackelid U. Franuhofer Direct Digital Manufacturing Conference, Berlin, Germany: DDMC, 2014: 1
[197] Leyens C, Frückner F, Nowotny S. Presented at TMS Symposium on Gamma Titanium Aluminide, 16-20 February 2014, San Diego, USA
[198] Jüchter V, Schwerdtfeger J, Körner C. Presented at TMS Symposium on Gamma Titanium Aluminide, 16-20 February 2014, San Diego, USA
[199] European Science Foundation, Materials ScienceEngineering Expert Committee (MatSEEC). Materials Science and Engineering in Europe: Challengers and Opportunities. Science Position Paper, November, 2013
[200] Gartner′s 2012 Hype Cycle for Emerging Technologies Identifies ‘Tipping Point’ Technologies That Will Unlock Long-Awaited Technology Scenarios. artner′s 2012 Hype Cycle for Emerging Technologies Identifies ‘Tipping Point’ Technologies That Will Unlock Long-Awaited Technology Scenarios. (accessed 2014.06.10
[201] Harrop J. Application of 3D Printing 2014-2024: Forcasts, Markets, Players. IDTechEx Report, 2014
[1] 熊天英, 王吉强. 中国科学院金属研究所冷喷涂技术研究进展[J]. 金属学报, 2023, 59(4): 537-546.
[2] 潘复生, 蒋斌. 镁合金塑性加工技术发展及应用[J]. 金属学报, 2021, 57(11): 1362-1379.
[3] 陈玉勇,贾燚,肖树龙,田竟,徐丽娟. TiAl基金属间化合物熔模精密铸造研究进展[J]. 金属学报, 2013, 49(11): 1281-1285.
[4] 崔跃 蒋成保 徐惠彬. Tb-Dy-Fe-Co合金本征磁致伸缩性能[J]. 金属学报, 2011, 47(2): 214-218.
[5] 宋玉泉 贾红杰 徐进 管晓方. 结构陶瓷及其超塑性 I. 结构陶瓷简介[J]. 金属学报, 2009, 45(1): 1-5.