Please wait a minute...
金属学报  2014, Vol. 50 Issue (4): 471-478    DOI: 10.3724/SP.J.1037.2013.00611
  本期目录 | 过刊浏览 |
超塑性自由胀形的双目立体视觉测量研究*
马品奎(), 宋玉泉
吉林大学超塑性与塑性研究所, 长春 130025
BINOCULAR STEREO VISION MEASUREMENT RESEARCH FOR SUPERPLASTIC FREE BULGING
MA Pinkui(), SONG Yuquan
Superplastic and Plastic Research Institute, Jilin University, Changchun 130025
引用本文:

马品奎, 宋玉泉. 超塑性自由胀形的双目立体视觉测量研究*[J]. 金属学报, 2014, 50(4): 471-478.
Pinkui MA, Yuquan SONG. BINOCULAR STEREO VISION MEASUREMENT RESEARCH FOR SUPERPLASTIC FREE BULGING[J]. Acta Metall Sin, 2014, 50(4): 471-478.

全文: PDF(2013 KB)   HTML
摘要: 

超塑性自由胀形实验中准确测量胀形件轮廓曲面以及曲面上各点的变形是建立超塑性自由胀形解析理论的重要基础. 本工作依据自由胀形件轮廓为轴对称旋转曲面这一重要特征, 将曲面测量问题转化为曲面上特征点的测量, 采用双目立体视觉系统测量特征点的三维坐标, 并进行曲线拟合以确定其轮廓曲面, 计算几何参数, 通过分析轮廓曲面上特征点位置变化以及两相邻特征点之间间距的变化来测量应变. 介绍了双目立体视觉系统的组成和测量方法, 以及系统模型、标定方法、消除高温影响和图像处理等关键环节, 给出了胀形件几何参数和变形测量的方法, 进行了测量实验.

关键词 超塑性自由胀形双目立体视觉测量    
Abstract

It is a significant foundation of superplastic free bulging analytic theory to accurately measure the surface profile and the deformation of each point on surface. Based on an important feature of the profile of the free bulging part which can be depicted as axisymmetric rotating surface, in this study, the measurement of the surface was translated into that of the feature points on the part surface, and the three-dimensional coordinates of these points were measured by the binocular stereo vision system for the first time. Then, through curve fitting, contour surface and geometric parameters were determined, and the strain were characterized through analyzing coordinates change of the feature points and distance change between two adjacent points. The setup and the measuring method of the vision system were introduced, as well as several key steps, such as system model, calibration method, elimination of influence of high temperature, and image processing. The methods were proposed for measuring geometric parameters and deformation of bulging part , and the related experiments were performed.

Key wordssuperplasticity    free bulging    binocular stereo vision    measurement
收稿日期: 2013-12-02     
ZTFLH:  TH871  
基金资助:* 国家自然科学基金项目51005099 和51005098 及吉林省自然科学基金项目201115015资助
图1  
图2  
图3  
图4  
Feature point Coordinate measured by
vision system (r, h)
Coordinate measured by manual measurement (r, h)
0 (0.00, 71.105) (0.00, 72.34)
1 (16.342, 69.424) (16.82, 69.72)
2 (27.738, 65.548) (28.34, 64.00)
3 (36.385, 56.109) (37.60, 56.32)
4 (43.219, 48.492) (43.88, 48.88)
5 (47.679, 38.752) (48.78, 39.82)
6 (51.152, 30.043) (51.88, 30.82)
7 (53.362, 23.486) (53.22, 22.80)
rmax (53.752, 17.820) (53.46, 17.50)
8 (53.418, 15.278) (53.20, 14.36)
9 (52.725, 7.619) (52.10, 7.00)
10 (50.00, 0.00) (50.00, 0.00)
  
[1] Giuliano G, Franchitti S. Int J Mach Tool Manuf, 2007; 47: 471
[2] Jovance F. Int J Mech Sci, 1968; 10: 403
[3] Holt D L. Int J Mech Sci, 1970; 12: 491
[4] Cheng J H. J Mater Process Technol, 1996; 58: 233
[5] Cornfield G C, Johnson R H. Int J Mech Sci, 1970; 12: 479
[6] Jeyasingh J J V, Rao B N. J Mater Process Technol, 2005; 160: 370
[7] Luo Z J, Guo N C, Gong Q Y. J Northwestern Polytech Univ, 1985; 3: 419
[7] (罗子键, 郭乃成, 龚泉源. 西北工业大学学报, 1985; 3: 419)
[8] Tang S, Robbins T L. J Eng Mater Technol, 1974; 96: 77
[9] Enikeev F U, Kruglov A A. Int J Mech Sci, 1995; 37: 473
[10] Cheng J H. Int J Mech Sci, 1994; 36: 981
[11] Song Y Q, Zhao J. Mater Sci Eng, 1986; 84: 111
[12] Song Y Q. Mater Sci Eng, 1987; 86: 179
[13] Song Y Q. Chin J Mech Eng, 1989; 25: 80
[13] (宋玉泉. 机械工程学报, 1989; 25: 80)
[14] Song Y Q, Lian S J. Sci China, 1990; 33A: 1246
[15] Yang H S, Mukhjee A K. Int J Mech Sci, 1992; 34: 283
[16] Brandon J F, Lecoanet H, Oytana C. Int J Mech Sci, 1979; 21: 379
[17] Song Y Q, Zuo W Y. Sci China, 1992; 35A: 122
[18] Song Y Q, Zuo W Y. Sci China, 1992: 35A: 247
[19] Song Y Q, Zuo W Y. Sci China, 1992; 35A: 1388
[20] Hsu C C, Wang W H. Mater Sci Eng, 1996; A205: 247
[21] Huang A, Lowe A, Cardew-Hall M J. J Mater Process Technol, 2001; 112: 136
[22] Song Y Q, Zhao J, Wan S D. Met Sci Technol, 1985; 4(3): 89
[22] (宋玉泉, 赵 军, 万胜狄.金属科学与工艺, 1985; 4(3): 89)
[23] Lin Y Y, Lou X S, Zhang A B. J Exp Mech, 1992; 7: 351
[23] (林有义, 骆晓森, 张爱斌. 实验力学, 1992; 7: 351)
[24] Zhou J H, Fu G L, Chen M H, Zhang Z Y, Zhao D P. J Data Acquis Process, 1996; 11(1): 69
[24] (周建华, 傅桂龙, 陈明和, 张中元, 赵大朋. 数据采集与处理, 1996; 11(1): 69)
[25] Chan K C, Chow K K. Int J Mech Sci, 2002; 44: 1467
[26] Jeyasingh J J V, Kothandaraman G, Sinha P P, Rao B N, Reddy A C. Chennakesava R A. Mater Sci Eng, 2008; A478: 397
[27] Song Y Q, Ma P K, Guan Z P. Acta Metall Sin, 2010; 46: 1
[27] (宋玉泉, 马品奎, 管志平. 金属学报, 2010; 46: 1)
[28] Tsai R Y. IEEE Trans Robot Autom, 1987; 3: 323
[29] Zhang Z Y. IEEE Trans Pattern Anal Mach Intell, 2000; 22: 1330
[1] 王慧远, 夏楠, 布如宇, 王珵, 查敏, 杨治政. 低合金化高性能变形镁合金研究现状及展望[J]. 金属学报, 2021, 57(11): 1429-1437.
[2] 谢广明, 马宗义, 薛鹏, 骆宗安, 王国栋. 工具转速对搅拌摩擦加工Mg-Zn-Y-Zr耐热镁合金超塑性行为的影响[J]. 金属学报, 2018, 54(12): 1745-1755.
[3] 王慧远, 张行, 徐新宇, 查敏, 王珵, 马品奎, 管志平. 超塑性轻合金组织稳定性的研究进展及展望[J]. 金属学报, 2018, 54(11): 1618-1624.
[4] 杨超,王继杰,马宗义,倪丁瑞,付明杰,李晓华,曾元松. 7B04铝合金薄板的搅拌摩擦焊接及接头低温超塑性研究*[J]. 金属学报, 2015, 51(12): 1449-1456.
[5] 付明杰, 韩秀全, 吴为, 张建伟. Ti-23Al-17Nb合金板材超塑性研究*[J]. 金属学报, 2014, 50(8): 955-961.
[6] 管志平,马品奎,宋玉泉. 超塑性拉伸断裂分析[J]. 金属学报, 2013, 49(8): 1003-1011.
[7] 沈军,冯艾寒. Ti2AlNb基合金微观组织调制及热成形研究进展[J]. 金属学报, 2013, 49(11): 1286-1294.
[8] 侯介山,周兰章,郭建亭,袁超. NiAl合金超塑性的人工神经网络预测[J]. 金属学报, 2013, 49(11): 1333-1338.
[9] 曹富荣 丁桦 王昭东 李英龙 管仁国 崔建忠. 超轻β固溶体Mg-11Li-3Zn合金的准超塑性与变形机理[J]. 金属学报, 2012, 48(2): 250-256.
[10] 王刚 徐磊 王永 郑卓 崔玉友 杨锐. 高Nb-TiAl合金高温塑性变形行为及微观组织演化[J]. 金属学报, 2011, 47(5): 587-593.
[11] 康进武 聂刚 喻海良 龙海敏 郝小坤 黄天佑 胡永沂. 热处理过程大型铸钢件变形的三维动态测量[J]. 金属学报, 2011, 47(5): 535-539.
[12] 曹富荣 管仁国 丁桦 李英龙 周舸 崔建忠. 超轻α固溶体基Mg-6Li-3Zn合金的位错蠕变[J]. 金属学报, 2010, 46(6): 715-722.
[13] 宋玉泉 马品奎 管志平. 超塑性非球面自由胀形的测量[J]. 金属学报, 2010, 46(1): 1-5.
[14] 张寒 白秉哲 方鸿生. 预变形对低合金高碳钢超塑性变形行为的影响[J]. 金属学报, 2009, 45(9): 1106-1110.
[15] 康志新 彭勇辉 桑静 简炜炜 赵海东 李元元. T型通道挤压变形Mg-1.5Mn-0.3Ce合金的超塑性和组织演变[J]. 金属学报, 2009, 45(9): 1117-1124.